Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving tumour cells to their death

24.03.2015

Researchers from the University of Freiburg help discover a new approach to treating B cell acute lymphoblastic leukaemia

B cell acute lymphoblastic leukaemia, or B-ALLis the most common tumour disease in children and also occurs in adults. It develops when signalling pathways in immature B cells, or pre-B cells, are dysregulated. Prof. Dr. Markus Müschen from the University of California in San Francisco, USA, and his team worked together with the BIOSS researchers Prof. Dr. Hassan Jumaa and Prof. Dr. Michael Reth to find a new approach for treating the B-ALL tumour disease. Their studies could change the way we think about clinical therapies for treating these tumour diseases. The scientists have published their research in the journal Nature.


Please see the article

B cells are white blood cells that produce antibodies against antigens, namely substances which the immune system recognises as foreign. Normal B cell development and maturation is regulated by a balance between kinase and phosphatase enzymes. These enzymes phosphorylate or de-phosphorylate the signalling subunits of the B cell antigen receptors (BCR).

This means that the kinases add phosphate groups to the BCR, while the phosphatases remove them. Only if it has been phosphorylated by kinases is a BCR completely active and signals to the B cell that there is a foreign substance. This means that the kinases and phosphatases affect the receptor’s capacity to send signals.

In B-ALL tumour cells, certain kinase enzymes, such as the Abelson tyrosine kinase (ABL), are altered and act as oncogenes, spurring the growth of tumours independently of the BCR. The B cells then continue to divide although they do not function. That is why this disease is treated with agents that inhibit the ABL kinase. However, resistant ABL mutants still often develop and the tumour continues to grow.

The American and German team investigated how BCR signalling in tumour cells is regulated. They discovered that the signalling subunits of the BCR in B-ALL tumour cells are hardly phosphorylated and that there is a higher number of inhibiting receptors on the cell’s surface. Because these receptors bind phosphatases, they prevent the BCR from becoming active. When the researchers shut off the inhibiting receptors or the associated phosphatases, the B-ALL tumour cells died instantly.

The researchers were also able to demonstrate in an animal experiment how a phosphatase inhibitor prevented tumours from spreading. By inhibiting the phosphatases, they essentially freed the BCR signalling pathways that the ABL kinase had been supressing. Because a B cell that has a disproportionate amount of active BCR receptors no longer has a balance of kinases and phosphatases, this form of therapy thus leads to cell death, or what is known as apoptosis.

Future ALL treatments could aim at inhibiting the phosphatases instead of the ABL kinases and thereby strengthen BCR signals. Reth said, "In the last few years, we have investigated at BIOSS the significance of the balance between kinases and phosphatases for the normal development of B lymph nodes. Now we’ve discovered that this also plays a role in the development and treatment of B cell tumours.”

Reth is the scientific director of the cluster of excellence BIOSS Centre for Biological Signalling Studies. He is also a professor at the Institute of Biology III at the University of Freiburg and head of a research group at the Max Planck Institute of Immunobiology and Epigenetics in Freiburg. Jumaa is now a professor at the Institute of Immunobiology at the University of Ulm and was a member of the BIOSS Centre for Biological Signalling Studies.

Original Publication:

Zhengshan Chen, Seyedmehdi Shojaee, Maike Buchner, Huimin Geng, Jae Woong Lee, Lars Klemm, Björn Titz, Thomas G. Graeber, Eugene Park, Ying Xim Tan, Anne Satterthwaite, Elisabeth Paietta, Stephen P. Hunger, Chery L Willman, Ari Melnick, Mignon L Loh, Jae U. Jung, John E. Coligan, Silvia Bolland, Tak W. Mak, Andre Limnander, Hassan Jumaa, Michael Reth, Arthur Weiss, Clifford A. Lowell and Markus Müschen (2015). Signaling thresholds and negative B cell selection in acute lymphoblastic leukemia. Nature. DOI: 10.1038/nature14231


Contact:
Prof. Dr. Michael Reth
BIOSS Centre for Biological Signalling Studies
University of Freiburg
Phone: +49 (0)761 / 203 - 97663
E-Mail: michael.reth@bioss.uni-freiburg.de

Rudolf-Werner Dreier | University of Freiburg
Further information:
https://www.pr.uni-freiburg.de/pm/2015/pm.2015-03-24.42-en?set_language=en

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>