Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driving chemical reactions with light

06.05.2019

The chemical nature of surface molecules influences plasmon responses of metal nanoparticles

How can chemical reactions be triggered by light, following the example of photosynthesis in nature?


(a) When adsorbates bind to metal, they induce electric dipoles in the metal. Freely moving electrons in the metal can collide with these induced dipoles and lose their energy. (b+c) The efficiency of such a collision depends on the orientation of the induced dipoles and thus on the chemistry of the adsorbate.

ill./©: Felix Schlapp, JGU

This process is still poorly understood. However, researchers from Johannes Gutenberg University Mainz (JGU) in Germany und Rice University in Houston, USA, have now uncovered a major piece of the puzzle. Their findings have been published recently in Science Advances.

Trees, bushes and other plants are extremely efficient in converting water and carbon dioxide into oxygen and glucose, a type of sugar, by means of photosynthesis. If we can discover the fundamental physical mechanisms involved and harness them for other general applications, the benefits for mankind could be huge.

The energy of sunlight, for example, could be used to generate hydrogen from water as a fuel for automobiles. The technique of utilizing light-driven processes like those involved in photosynthesis in chemical reactions is called photocatalysis.

Plasmons: electrons oscillating in synchrony

Scientists commonly use metallic nanoparticles to capture and harness light for chemical processes. Exposing nanoparticles to light in photocatalysis causes so-called plasmons to be formed. These plasmons are collective oscillations of free electrons in the material. "Plasmons act like antennas for visible light," explained Professor Carsten Sönnichsen of Mainz University.

However, the physical processes involved in photocatalysis involving such nano-antennas have yet to be grasped in detail. The teams at JGU and Rice University have now managed to shed some light on this enigma. Graduate student Benjamin Förster and his supervisor Carsten Sönnichsen have been investigating this process more extensively.

Modifying plasmon resonances

Förster primarily concentrated on determining how illuminated plasmons reflect light and at what intensity. His technique employed two very particular thiol isomers, molecules whose structures are arranged as a cage of carbon atoms. Within the cage-like structure of the molecules are two boron atoms.

By altering the positions of the boron atoms in the two isomers, the researchers were able to vary the dipole moments, in other words, the spatial charge separation over the cages. This led to an interesting discovery: If they applied the two types of cages to the surface of metal nanoparticles and excited plasmons using light, the plasmons reflected different amounts of light depending on which cage was currently on the surface.

In short, the chemical nature of the molecules located on the surface of gold nanoparticles influenced the local resonance of the plasmons because the molecules also alter the electronic structure of the gold nanoparticles.

Teamwork crucial for results

Cooperation was essential in the project. "We would never have been able to achieve our results single-handedly," said Sönnichsen. Benjamin Förster spent a year funded by the Graduate School of Excellence Materials Science in Mainz (MAINZ) researching at Rice University in Houston with Professor Stephan Link, who has been visiting professor at MAINZ since 2014.

Although the funding of the MAINZ Graduate School provided by the German federal and state governments' Excellence Initiative will be ending in October 2019, Mainz University will – in special cases – continue to provide postgraduates with financial support for this kind of long-term stays abroad. This will be organized under the auspices of the Max Planck Graduate Center (MPGC) and in cooperation with the state of Rhineland-Palatinate.

Image
http://www.uni-mainz.de/bilder_presse/09_phys_chemie_plasmonen_antwort.jpg
(a) When adsorbates bind to metal, they induce electric dipoles in the metal. Freely moving electrons in the metal can collide with these induced dipoles and lose their energy. (b+c) The efficiency of such a collision depends on the orientation of the induced dipoles and thus on the chemistry of the adsorbate.
ill./©: Felix Schlapp, JGU

Wissenschaftliche Ansprechpartner:

Professor Dr. Carsten Sönnichsen
Institute of Physical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-24313
fax +49 6131 39-25348
e-mail: soennichsen@uni-mainz.de
https://www.nanobiotech.uni-mainz.de/

Originalpublikation:

B. Foerster et al., Plasmon damping depends on the chemical nature of the nanoparticle interface, Science Advances, 22 March 2019,
DOI:10.1126/sciadv.aav0704
https://advances.sciencemag.org/content/5/3/eaav0704

Weitere Informationen:

https://www.mainz.uni-mainz.de/ – Graduate School of Excellence Materials Science in Mainz (MAINZ) ;
https://www.mainz.uni-mainz.de/mainz-visiting-professors/prof-stephan-link/ – MAINZ Visiting Professor Stephan Link ;
http://www.uni-mainz.de/presse/16589_ENG_HTML.php – press release "Chemists develop innovative nano-sensors for multiple proteins" (31 July 2013)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

Better thermal conductivity by adjusting the arrangement of atoms

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>