Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double the pain: RUB biologists find the cause of pain in the treatment of fair skin cancer

20.06.2012
Pain caused by two different mechanisms

Apply the ointment, light on, light off – that’s how easy it is to cure various forms of non-melanoma skin cancer.


Cells that are incubated with aminolevulinic acid form protoporphyrin IX (PpIX), which appears red on the fluorescence micrograph. Both nerve cells (top row), and skin cancer cells (bottom row) form PpIX. The image on the left of both rows represents an overview, the images in the middle and on the right show enlarged sections of the images on the left. The power plants of the nerve and cancer cells, the mitochondria, are coloured green. The colour pattern of PpIX and the mitochondrial dye are similar. This suggests that PpIX accumulates in the mitochondria. Image: Ben Novak

However, the majority of patients suffer severe pain during the so-termed photodynamic therapy. Why the treatment with ointment and red light can be so painful has now been uncovered by researchers from the RUB.

They identified the ion channels involved and signalling molecules secreted by the cancer cells. “The results may provide a starting point for suppressing the pain”, says Dr. Ben Novak of the Department of Animal Physiology.

How the photodynamic therapy works

In contrast to normal cells, cancer cells are equipped with different enzymes and have a much higher metabolism. If you apply a molecule called aminolevulinic acid to the skin in the form of a gel, cancer cells take up considerably more of this substance than healthy cells. If aminolevulinic acid accumulates in the cells, the mitochondria – the power plants of the cells – form the molecule protoporphyrin IX. When irradiated with red light, protoporphyrin IX reacts with oxygen. This produces highly reactive oxygen species, free radicals, which destroy the cancer cells. Approximately ten minutes of red light irradiation is sufficient to successfully treat superficial forms of non-melanoma skin cancers such as actinic keratosis. Doctors also remove warts in this way.

Painful therapy

“The catch is: it’s terribly painful”, says Ben Novak. Forty percent of those treated experience pain during the light irradiation, which they assess on a scale of 0 to 10 (whereby 10 corresponds to an excruciating pain like a heart attack) as 7 to 8. Using injections, like at the dentist, it is possible to numb the nerves involved. “But that also always involves a risk”, says the Bochum biologist. The scientists led by the RUB professor Dr. Hermann Lübbert have now solved the mystery as to why the treatment hurts at all.

Pain-sensitive cells in the skin are stimulated

The pain is generated by two mechanisms. In a cell culture experiment, the team showed that not only cancer cells but also pain-sensitive nerve cells in the skin take up aminolevulinic acid – and its derivative methyl aminolevulinic acid – from the ointment. Using calcium imaging, the animal physiologists followed the activity of nerve cells which they had treated with aminolevulinic acid and cells that were not exposed to the substance. Treated nerve cells fired when the researchers exposed them to light. In a living organism, this would mean that the cells would send a pain stimulus to the brain. Without the aminolevulinic acid, the pain-sensitive cells remained inactive under red light. In further experiments, the scientists showed that the activity of the nerve cells is caused by sodium channels and voltage-gated calcium channels in the cell membrane. “A drug that targets these channels would, conceivably, be able to suppress the pain – but that’s still in the future”, says Ben Novak.

Tumour cells alert nerve cells

Lübbert’s team found that pain is generated in the nerve cells themselves, but also in another way. The affected tumour cells secrete a molecule – namely acetylcholine. “This is how they pass the message to other cells: something is wrong, my mitochondria are collapsing right now”, Novak illustrates. Acetylcholine acts as a neurotransmitter in the nervous system, where it is harmless. “Previous studies have shown though, that it is very painful when it is injected into the skin”. Some of the results have already been published. The researchers are currently preparing the data on the mechanisms of pain generation for publication. This attracted a great deal of interest at the 12th Congress of the European Society for Photodynamic Therapy in Dermatology (Euro-PDT) in Copenhagen in May 2012.

Bibliographic record

B. Novak, R. Schulten, H. Lübbert (2011): δ-Aminolevulinic acid and its methyl ester induce the formation of Protoporphyrin IX in cultured sensory neurons, Naunyn-Schmiedeberg's Archives of Pharmacology, doi: 10.1007/s00210-011-0683-1

Further information

Dr. Ben Novak, Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24331
Ben.Novak@rub.de

Prof. Dr. Hermann Lübbert Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24324
Hermann.Luebbert@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>