Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double the pain: RUB biologists find the cause of pain in the treatment of fair skin cancer

20.06.2012
Pain caused by two different mechanisms

Apply the ointment, light on, light off – that’s how easy it is to cure various forms of non-melanoma skin cancer.


Cells that are incubated with aminolevulinic acid form protoporphyrin IX (PpIX), which appears red on the fluorescence micrograph. Both nerve cells (top row), and skin cancer cells (bottom row) form PpIX. The image on the left of both rows represents an overview, the images in the middle and on the right show enlarged sections of the images on the left. The power plants of the nerve and cancer cells, the mitochondria, are coloured green. The colour pattern of PpIX and the mitochondrial dye are similar. This suggests that PpIX accumulates in the mitochondria. Image: Ben Novak

However, the majority of patients suffer severe pain during the so-termed photodynamic therapy. Why the treatment with ointment and red light can be so painful has now been uncovered by researchers from the RUB.

They identified the ion channels involved and signalling molecules secreted by the cancer cells. “The results may provide a starting point for suppressing the pain”, says Dr. Ben Novak of the Department of Animal Physiology.

How the photodynamic therapy works

In contrast to normal cells, cancer cells are equipped with different enzymes and have a much higher metabolism. If you apply a molecule called aminolevulinic acid to the skin in the form of a gel, cancer cells take up considerably more of this substance than healthy cells. If aminolevulinic acid accumulates in the cells, the mitochondria – the power plants of the cells – form the molecule protoporphyrin IX. When irradiated with red light, protoporphyrin IX reacts with oxygen. This produces highly reactive oxygen species, free radicals, which destroy the cancer cells. Approximately ten minutes of red light irradiation is sufficient to successfully treat superficial forms of non-melanoma skin cancers such as actinic keratosis. Doctors also remove warts in this way.

Painful therapy

“The catch is: it’s terribly painful”, says Ben Novak. Forty percent of those treated experience pain during the light irradiation, which they assess on a scale of 0 to 10 (whereby 10 corresponds to an excruciating pain like a heart attack) as 7 to 8. Using injections, like at the dentist, it is possible to numb the nerves involved. “But that also always involves a risk”, says the Bochum biologist. The scientists led by the RUB professor Dr. Hermann Lübbert have now solved the mystery as to why the treatment hurts at all.

Pain-sensitive cells in the skin are stimulated

The pain is generated by two mechanisms. In a cell culture experiment, the team showed that not only cancer cells but also pain-sensitive nerve cells in the skin take up aminolevulinic acid – and its derivative methyl aminolevulinic acid – from the ointment. Using calcium imaging, the animal physiologists followed the activity of nerve cells which they had treated with aminolevulinic acid and cells that were not exposed to the substance. Treated nerve cells fired when the researchers exposed them to light. In a living organism, this would mean that the cells would send a pain stimulus to the brain. Without the aminolevulinic acid, the pain-sensitive cells remained inactive under red light. In further experiments, the scientists showed that the activity of the nerve cells is caused by sodium channels and voltage-gated calcium channels in the cell membrane. “A drug that targets these channels would, conceivably, be able to suppress the pain – but that’s still in the future”, says Ben Novak.

Tumour cells alert nerve cells

Lübbert’s team found that pain is generated in the nerve cells themselves, but also in another way. The affected tumour cells secrete a molecule – namely acetylcholine. “This is how they pass the message to other cells: something is wrong, my mitochondria are collapsing right now”, Novak illustrates. Acetylcholine acts as a neurotransmitter in the nervous system, where it is harmless. “Previous studies have shown though, that it is very painful when it is injected into the skin”. Some of the results have already been published. The researchers are currently preparing the data on the mechanisms of pain generation for publication. This attracted a great deal of interest at the 12th Congress of the European Society for Photodynamic Therapy in Dermatology (Euro-PDT) in Copenhagen in May 2012.

Bibliographic record

B. Novak, R. Schulten, H. Lübbert (2011): δ-Aminolevulinic acid and its methyl ester induce the formation of Protoporphyrin IX in cultured sensory neurons, Naunyn-Schmiedeberg's Archives of Pharmacology, doi: 10.1007/s00210-011-0683-1

Further information

Dr. Ben Novak, Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24331
Ben.Novak@rub.de

Prof. Dr. Hermann Lübbert Department of Animal Physiology, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24324
Hermann.Luebbert@rub.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>