Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dormant Genes Brought to Life in New Generations

01.10.2018

The genetic differences in phyloplankton living in close geographic proximity can be great, something which long has surprised researchers. Now new research shows that the ability of phyloplankton to generate resting stages can be an important part of the explanation.

Phyloplankton have ample opportunity for broad dispersal since they are small, numerous and carried by the current. For this reason, researchers have earlier thought that phyloplankton are genetically alike across large areas. Instead, it has been discovered that the genetic differences can in many cases be great among neighboring populations.


Illustration, Josefin Sefbom

Josefin Sefbom


Portrait of Lisa Sundqvist

Rikard Sandberg, Photographer.

A new study by researchers from the University of Gothenburg, identifies phyloplankton’s ability to generate resting stages as an important explanation for genetic differences.

“When a species forms cysts, it enters a resting stage, similar in function to the seeds produced by plants, through which the species can survive over a long period. Some species can survive as long as a century,” says Lisa Sundqvist, who has done her research at the University of Gothenburg.

Old genes preserved in repositories at the bottom of the ocean

When cysts are formed, they fall to the bottom where they accumulate in the sediment and form repositories of prior generations. “The repository serves as a gene bank that the cysts
can hatch from and begin to live again in the water,” says Lisa Sundqvist.

With the help of a model the researchers show that a population can establish itself in a location when the species is able to generate resting stages. This process means that genetic differences can be preserved and become stronger over time, even if there is a displacement of individuals between to different areas.

“Cysts found in the sediment provide a local supply of genes from earlier generations that can outcompete or reduce the influence of the gene supply from current populations in other areas. A review of the literature also shows that genetic difference between nearby populations are far more common among the phyloplankton that can generate enduring resting stages when compared with those that cannot. This supports our theory significantly,” says Lisa Sundqvist.

More significant effect than expected

The new study shows that the anchoring effect of resting stages is likely far more important than researchers have previously thought. It can be a significant part of the explanation for the differences in genetic makeup that researchers see in species that generate resting stages compared with those that don’t.

‘This has great significance for the capacity to adapt to the environment,” says Lisa Sundqvist.

Journal Name: ISME Journal
Article Name: The anchoring effect-long-term dormancy and genetic population structure
Here is the article link: https://www.nature.com/articles/s41396-018-0216-8

Contact:
Lisa Sundqvist, has done her research at The University of Gothenburg, cell: +46 (0)702-88 97 96, email: lisa.sundqvist@smhi.se
Secondary contact:
Josefin Sefbom, Department of Marine Sciences, University of Gothenburg, email: josefin.sefbom@marine.gu.se

Weitere Informationen:

https://science.gu.se/english/News/News_detail/?languageId=100001&contentId=...

Thomas Melin | idw - Informationsdienst Wissenschaft

Further reports about: cysts genes genetic difference genetic makeup population structure

More articles from Life Sciences:

nachricht Chemists use light to build biologically active compounds
14.11.2019 | Westfälische Wilhelms-Universität Münster

nachricht Something old, something new in the Ocean`s Blue
14.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>