Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dopamine leaves its mark in brain scans

21.11.2014

BOLD signals in functional magnetic resonance imaging do not always reflect what nerve cells are doing

Researchers use functional magnetic resonance imaging (fMRI) to identify which areas of the brain are active during specific tasks.


Dopamine alters the so-called BOLD signal in MRI:

Left: If the visual cortex of the brain is active, the BOLD signal increases without dopamine. The activities of gamma waves, individual groups of nerve cells (MUA) as well as the blood flow in the area (CBF) also increase.

Centre: Under the influence of dopamine, the BOLD signal decreases. The gamma-waves and the activity of the nerve cells, however, remain constant. The blood flow even increases.

Right: Active regions (red) in the visual cortex of the brain.

© MPI f. Biological Cybernetics / D. Zaldivar

The method reveals areas of the brain, in which energy use and hence oxygen content of the blood changes, thus indirectly showing which cell-populations are particularly active at a given moment.

Researchers from the Max Planck Institute for Biological Cybernetics in Tübingen now demonstrate that activity induced by signalling molecules such as dopamine may yield hitherto unpredictable up or down modulations of the fMRI signals, with the result that the neural and vascular responses dissociate. In such cases, far more precise data can be obtained when fMRI is combined with concurrent measurements of cerebral blood flow.

When you work hard, you breathe heavily. The same applies to nerve cells. When neurons fire, they consume more oxygen that is being delivered through blood. To ensure that no deficiency occurs, an oversupply of oxygenated blood is immediately transported to active regions of the brain. As a result, the oxygen content of the blood rises in those areas. In a magnetic resonance -scanner, this process is measured in the form of a blood oxygenation level dependent (BOLD) signal. When the activity of nerve cells increases, the BOLD signal increases too - in theory.

However, external influences such as mood, age, drugs, and food can alter BOLD signals and thereby change the interpretation of fMRI results. Moreover, the results are also affected by different brain states such as attention, memory and reward. “There is no absolute correlation between neuronal activity and BOLD signals.

Consequently, our ability to interpret the signals from fMRI scans is limited,” says Daniel Zaldivar of the Max Planck Institute for Biological Cybernetics, describing the motivation starting point of his research. Together with his colleagues, he studied how nerve cells in the visual cortex of macaque monkeys respond to visual stimuli when the brain is simultaneously under the influence of dopamine. The surprising result: although the activity of the nerve cells increases, the BOLD signal decreases by about 50 percent. This can lead the viewer of a brain scan to erroneously conclude that these neurons are less active.

“Dopamine presumably causes active cells to consume more oxygen than can be delivered,” says Zaldivar. Paradoxically, dopamine ramps up neurons’ activity to such a degree that the BOLD signal shows exactly the opposite of what is really happening. Under the influence of dopamine and probably other neuromodulators, changes in the BOLD signal alone are therefore not sufficient to draw conclusions about the activity of neuronal cells.

Measurements of cerebral blood flow in combination with BOLD and neurophysiology offer better insight into the changes of energy metabolism and help to draw better conclusion about the neuronal cells activity. That is because cerebral blood flow provides more direct information about the delivery of oxygen. Interestingly, Zaldivar and colleges found that under the influence of dopamine, blood flow increased. This results lead to the conclusion that the increase along with the neural activity is driven by increased energy use.

"If we can improve our understanding of how BOLD signals change under the influence of neuromodulators, we may be able to interpret brain scans better and detect problems at an earlier stage,” says Zaldivar. In schizophrenia patients, for example, the dopamine system in the brain is poorly regulated. If scientists knew what impact neuromodulators such as dopamine have on brain scan images, it might be possible to diagnose such illnesses earlier. “Before drawing conclusions about neuronal activity from BOLD signals, we first need to know what influence neuromodulators have on the images,” says Zaldivar.


Contact

Prof. Dr. Nikos Logothetis
Max Planck Institute for Biological Cybernetics, Tübingen

Phone: +49 7071 601-651

Email: nikos.logothetis@tuebingen.mpg.de

 
Dr. Daniel Zaldivar
Max Planck Institute for Biological Cybernetics, Tübingen

Phone: +49 7071 601-657

Email: Daniel.Zaldivar@tuebingen.mpg.de

 
Dr. Jozien Goense

Institute of Neuroscience & Psychology
University of Glasgow

Email: Jozien.Goense@glasgow.ac.uk


Original publication
Daniel Zaldivar, Alexander Rauch, Kevin Whittingstall, Nikos K. Logothetis, Jozien Goense

Dopamine-induced dissociation of BOLD and neural activity in macaque visual cortex

Current Biology, 20 November 2014

Prof. Dr. Nikos Logothetis | Max-Planck-Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>