Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Donor Cells for Immune Therapy

23.10.2008
In the future, bone marrow transfer to patients with leukaemia could be more secure. Experiments with mice have shown that certain cells of the immune system (regulatory T cells or Tregs) can suppress the dangerous side effects resulting from treatment.

Such cells control aggressive immune cells and, thus, unwanted immune reactions by the graft can be avoided. However, to date, there were no adequate techniques available to securely isolate the regulatory T cells.

Now, researchers of the Max Delbrück Center (MDC), Germany and their colleagues of the 'Fondazione Santa Lucia' in Rome, Italy have developed a simple method to specifically isolate these cells from human blood. (Blood)*.

According to the American Cancer Society, about 188,000 people world-wide developed leukaemia in 2007. Predominantly immature white blood cells can be found in their blood. These cells displace the healthy cells and, thus, suppress Blood a normal haematopoiesis. Chemotherapy destroys the diseased cells of the patient which then often have to be replaced by a bone marrow graft.

"However," says Dr. Markus Kleinewietfeld (MDC), "in 30 to 50 percent of the patients, the aggressive immune cells contaminating the bone marrow graft direct themselves against the recipient." This often lethal defence reaction is called 'Graft versus Host Disease' (GvHD). Yet, with the help of regulatory T cells from the blood of the donor, the rejection reaction might be suppressed.

"Until now, it was not possible to securely isolate regulatory T cells in their pure form," explains Dr. Kleinewietfeld. Since, in humans, the cell surface marker (CD25) used for the isolation before is also found on the aggressive immune cells, it was hardly possible to clearly separate the helpful Tregs from the dangerous cells.

With other markers (CD49d and CD127), the scientists now succeeded in separating the aggressive and dangerous immune cells from the helpful, regulatory cells. Thus, it is now possible to isolate regulatory T cells in high purity safely from human blood. Using these T cells, the researchers could already suppress a particular severe form of the 'Graft versus Host Disease' in mice. In a first clinical trial in Singapore, the MDC researchers now want to apply the regulatory cells in leukaemia patients who developed the severe immune reaction after a bone marrow donation.

"Singapore provides the infrastructure and financial commitment necessary for such trials," says Dr. Olaf Rötzschke, a former MDC researcher who now works at the 'Singapore Immunology Network' (SIgN) of the BIOPOLIS Campus. "Dependent on the outcome of this clinical test, regulatory T cells could possibly be used also for the treatment of autoimmune diseases, allergies and tissue rejections in the future," hopes Dr. Kirsten Falk, head of the MDC research group.

*Blood: doi 10 1182/blood-2008-04-150524

CD49d provides access to 'untouched' human Foxp3+ Treg free of contaminating effector cells

Markus Kleinewietfeld1, Mireille Starke1, Diletta Di Mitri2, Giovanna Borsellino2, Luca Battistini2, Olaf Rötzschke1,3, Kirsten Falk1

1Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
2Laboratory of Neuroimmunology, Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143 Rome, Italy

3Singapore Immunology Network (SIgN), 8A Biomedical Grove, IMMUNOS, Singapore 138648, Singapore

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10?13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/en/news

Further reports about: Isolate MDC Molecular Singapore T cells TREG blood cell blood flow immune cell marrow regulatory

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>