Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA 'Trojan horse' smuggles drugs into resistant cancer cells

24.02.2016

Cells mistake DNA casing for food, consume drugs and die

Researchers at The Ohio State University are working on a new way to treat drug-resistant cancer that the ancient Greeks would approve of--only it's not a Trojan horse, but DNA that hides the invading force.


This is a rotating view of a single drug-resistant leukemia cell, after it's absorbed DNA nanostructures. Fluorescent markers show that the nanostructures have been taken deep into the cell, into the organelles that will digest them.

Image by Matthew Webber, courtesy of The Ohio State University

In this case, the invading force is a common cancer drug.

In laboratory tests, leukemia cells that had become resistant to the drug absorbed it and died when the drug was hidden in a capsule made of folded up DNA.

Previously, other research groups have used the same packaging technique, known as "DNA origami," to foil drug resistance in solid tumors. This is the first time researchers have shown that the same technique works on drug-resistant leukemia cells.

The researchers have since begun testing the capsule in mice, and hope to move on to human cancer trials within a few years. Their early results appear in the journal Small.

The study involved a pre-clinical model of acute myeloid leukemia (AML) that has developed resistance against the drug daunorubicin. Specifically, when molecules of daunorubicin enter an AML cell, the cell recognizes them and pumps them back out through openings in the cell wall. It's a mechanism of resistance that study co-author John Byrd of The Ohio State University Wexner Medical Center compared to sump pumps that draw water from a basement.

He and Carlos Castro, assistant professor of mechanical engineering, lead a collaboration focused on hiding daunorubicin inside a kind of molecular Trojan horse that can bypass the pumps so they can't eject the drug from the cell.

"Cancer cells have novel ways of resisting drugs, like these pumps, and the exciting part of packaging the drug this way is that we can circumvent those defenses so that the drug accumulates in the cancer cell and causes it to die," said Byrd, a professor of internal medicine and director of the Division of Hematology. "Potentially, we can also tailor these structures to make them deliver drugs selectively to cancer cells and not to other parts of the body where they can cause side effects."

"DNA origami nanostructures have a lot of potential for drug delivery, not just for making effective drug delivery vehicles, but enabling new ways to study drug delivery. For instance, we can vary the shape or mechanical stiffness of a structure very precisely and see how that affects entry into cells," said Castro, director of the Laboratory for Nanoengineering and Biodesign.

In tests, the researchers found that AML cells, which had previously shown resistance to daunorubicin, effectively absorbed drug molecules when they were hidden inside tiny rod-shaped capsules made of DNA. Under the microscope, the researchers tracked the capsules inside the cells with fluorescent tags.

Each capsule measures about 15 nanometers wide and 100 nanometers long--about 100 times smaller than the cancer cells it's designed to infiltrate. With four hollow, open-ended interior compartments, it looks less like a pill a human would swallow and more like an elongated cinder block.

Postdoctoral researcher Christopher Lucas said that the design maximizes the surface area available to carry the drug. "The way daunorubicin works is it tucks into the cancer cell's DNA and prevents it from replicating. So we designed a capsule structure that would have lots of accessible DNA base-pairs for it to tuck into. When the capsule breaks down, the drug molecules are freed to flood the cell."

Castro's team designed the capsules to be strong and stable, so that they wouldn't fully disintegrate and release the bulk of the drugs until it was too late for the cell to spit them back out.

And that's what they saw with a fluorescence microscope--the cells drew the capsules into the organelles that would normally digest them, if they were food. When the capsules broke down, the drugs flooded the cells and caused them to disintegrate. Most cells died within the first 15 hours after consuming the capsules.

This work is the first effort for the engineers in Castro's lab to develop a medical application for the DNA origami structures they have been building.

Though DNA is stereotypically called the "building blocks of life," engineers today use natural and synthetic DNA as literal building blocks for mechanical devices. Previously, the Ohio State engineers created tiny hinges and pistons of DNA.

As Castro pointed out, DNA is a polymer--albeit a naturally occurring one--and he and his colleagues shape it into tiny devices, tools or containers by exploiting the physical interactions of the bases that make up the polymer chain. They build chains from DNA sequences that will naturally attract and bind with one another in certain ways, so that long the long polymers automatically fold up, or "self-assemble," into useful shapes.

In the case of this DNA Trojan horse, the researchers used the genome of a common bacteriophage, a virus that infects bacteria, and synthetic strands that were designed to fold up the bacteriophage DNA. Although the folded-up shape performs a function, the DNA itself does not, explained Patrick Halley, an engineering graduate student who is doing this work to earn his master's degree.

"One of the hardest things to get across when you're introducing this technology to people is that the DNA capsule doesn't do anything except hold a shape. It's just a static, rigid structure that carries things. It doesn't encode any proteins or do anything else that we normally think of DNA as doing," Halley said.

In keeping with the idea of DNA origami manufacturing, Castro said he hopes to create a streamlined and economically viable process for building the capsules--and other shapes as well--as part of a modular drug delivery system.

Byrd said the technique should potentially work on most any form of drug-resistant cancer if further work shows it can be effectively translated to animal models, though he stopped short of suggesting that it would work against pathogens such as bacteria, where the mechanisms for drug resistance may be different.

###

Other co-authors on the paper included Emily McWilliams, Matthew Webber, Randy Patton, Comert Kural and David Lucas. Funding for the research came from start-up funds provided to Castro by the Department of Mechanical and Aerospace Engineering, the Leukemia and Lymphoma Society, the National Cancer Institute, the D. Warren Brown Foundation, Four Winds Foundation and the Harry T. Mangurian Jr. Foundation.

Contact: Carlos Castro, 614-292-2662; Castro.39@osu.edu

John Byrd, 614-293-8330; Byrd.96@osu.edu

Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!

Further reports about: DNA DNA origami Trojan horse cancer cells capsule drug-resistant drugs leukemia

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>