Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA traces on wild flowers reveal insect visitors

08.02.2019

Researchers have discovered that insects leave tiny DNA traces on the flowers they visit; the newly developed eDNA method holds a vast potential for various parts of nature management

Researchers from Aarhus University, Denmark, have discovered that insects leave tiny DNA traces on the flowers they visit. This newly developed eDNA method holds a vast potential for documenting unknown insect-plant interactions, keeping track of endangered pollinators, such as wild bees and butterflies, as well as in the management of unwanted pest species.


The butterfly European skipper (Thymelicus lineola).

Photo: Ole Martin

Usage Restrictions: May be used in relation to this press release

Environmental DNA (eDNA) can provide an overview of the DNA sequences in complex samples such as water and soil, and thereby a snapshot of the species inhabiting the particular ecosystem. In previous analyses of water samples from lakes and oceans, researchers have fx found DNA traces from insects, amphibians, fish and whales.

Flowers as DNA collectors

Flower-rich grassland habitats like meadows are typically visited by hundreds of species of insects such as bees, butterflies, flies and beetles, which collect food from the flowers. However, it can obviously be quite difficult to keep track of which insect species visit which flower.

But now, Associate professor Philip Francis Thomsen and Postdoc Eva Egelyng Sigsgaard from the Department of Bioscience, Aarhus University, have undertaken eDNA analyses of 50 flowers from seven different plant species.

"I have worked with DNA from water and soil samples for several years and have often thought that DNA is probably much more common in the environment than would initially imagine. With this study we wanted to test if eDNA from flowers can reveal which insects the flowers have interacted with", says Philip Francis Thomsen, who heads a research group focusing on eDNA.

The researchers were quite surprised by the analyses, which revealed that the flowers have been visited by at least 135 different species of butterflies, moths, bees, flies, beetles, aphids, plant bugs, spiders, etc. The list goes on.

The flowers therefore function as passive DNA collectors that store data about each flower-visiting insect - a discovery that is published today in the prestigious international scientific journal Ecology and Evolution.

Efficient monitoring of our insect fauna

The method opens up completely new possibilities of studying the interactions between specific plants and insects. The knowledge gained can be used within many research areas, including applied research in pest control.

The new method also holds major perspectives in the management of endangered species like wild pollinators, which is an urgent task since many groups of flower-visiting insects are threatened. Thus, the populations of several wild bees and butterflies have decreased significantly in recent decades and many species have now become locally extinct.

"The eDNA method might provide a comprehensive overview of the insects involved in the pollination of various plants. Earlier the focus has almost entirely been on bees, butterflies and hoverflies, but we have found DNA from a wide range of other insects such as moths and beetles that may in fact also be important pollinators" says Philip Francis Thomsen.

###

Further information: Associate Professor Philip Francis Thomsen, Department of Bioscience, Section for Genetics, Ecology and Evolution, Aarhus University. Email: pfthomsen@bios.au.dk; Tel.: + 45 2714 2046

Read the scientific article: DOI: 10.1002/ece 3.4809

Media Contact

Philip Francis Thomsen
pfthomsen@bios.au.dk
45-27-14-20-46

 @aarhusuni

http://www.au.dk 

Philip Francis Thomsen | EurekAlert!
Further information:
https://www.eurekalert.org/pub_releases/2019-02/au-dto020719.php

Further reports about: DNA ecology endangered species flowers insect wild flowers

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>