Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA shows that last woolly mammoths had North American roots

08.09.2008
In a surprising reversal of conventional wisdom, a DNA-based study has revealed that the last of the woolly mammoths—which lived between 40,000 and 4,000 years ago—had roots that were exclusively North American.

The research, which appears in the September issue of Current Biology, is expected to cause some controversy within the paleontological community.

"Scientists have always thought that because mammoths roamed such a huge territory—from Western Europe to Central North America—that North American woolly mammoths were a sideshow of no particular significance to the evolution of the species," said Hendrik Poinar, associate professor in the departments of Anthropology, and Pathology & Molecular Medicine at McMaster University.

Poinar and Régis Debruyne, a postdoctoral research fellow in Poinar's lab, spent the last three years collecting and sampling mammoths over much of their former range in Siberia and North America, extracting DNA and meticulously piecing together, comparing and overlapping hundreds of mammoth specimen using the second largest ancient DNA dataset available.

... more about:
»DNA »Poinar »SIBERIA »mammoth »woolly mammoth

"Migrations over Beringia [the land bridge that once spanned the Bering Strait] were rare; it served as a filter to keep eastern and western groups or populations of woollies apart, says Poinar. "However, it now appears that mammoths established themselves in North America much earlier than presumed, then migrated back to Siberia, and eventually replaced all pre-existing haplotypes of mammoths."

"Small-scale population replacements, as we call them, are not a rare phenomenon within species, but ones occurring on a continental scale certainly are," says Ross MacPhee, curator of mammalogy at the American Museum of Natural History, and one of the researchers on the study. "We never expected that there might have been a complete overturn in woolly mammoths, but this is the sort of discoveries that are being made using ancient DNA. Bones and teeth are not always sensitive guides."

"Like paleontologists, molecular biologists have long been operating under a geographic bias," says Debruyne. "For more than a century, any discussion on the woolly mammoth has primarily focused on the well-studied Eurasian mammoths. Little attention was dedicated to the North American samples, and it was generally assumed their contribution to the evolutionary history of the species was negligible. This study certainly proves otherwise."

The origin of mammoths is controversial in itself. Some scientists believe that the first proto-mammoths arose in Africa about seven-million years ago in concert with ancestors of the Asian elephant. Around five to six million years ago, an early mammoth species migrated north into China, Siberia and, eventually, North America. This early dispersal into North America gave rise to a new mammoth known as the Columbian mammoth. Much later, back in Siberia, a cold-adapted form—the woolly mammoth—evolved and eventually crossed over the Beringian land bridge into present-day Alaska and the Yukon.

What happened next, says Poinar, is a mystery: The Siberian genetic forms began to disappear and were replaced by North American migrants.

"The study of evolution is an evolution in itself," says Poinar. "This latest research shows we're drilling down and getting a closer and better understanding of the origins of life on our planet."

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: DNA Poinar SIBERIA mammoth woolly mammoth

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>