Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA scissors can cut RNA, too

02.03.2018

The bacterial immune system “CRISPR-Cas9” is known to eliminate invading DNA. Würzburg scientists now discovered that it can also readily target RNA – a result with potentially far-reaching ramifications.

Our ability to change the content of genes at will—whether to reverse genetic diseases or improve food and energy crops—is undergoing a revolution. This revolution is being driven by “CRISPR-Cas9”, a technology based on an immune system of bacteria, discovered only a few years ago. This immune system recognizes and cuts foreign genomic material (desoxyribonucleic acid, DNA) from invading viruses and thus protects the bacteria from being infected.


From the left: Prof. Dr. Cynthia Sharma, Sara Eisenbart, Thorsten Bischler, Belinda Aul from IMIB and Prof. Dr. Chase Beisel from HIRI in Würzburg.

(Photo: Hilde Merkert, IMIB)

The cutting is performed by the Cas9 protein, that acts as a pair of scissors, while other parts of the system act as guides that instruct where Cas9 should cut the DNA. Scientists have been harnessing these molecular scissors in combination with artificial guides to specifically modify genes – not only in bacteria but also in plants and animals.

Cas9 protein is also capable of cutting RNA

While the Cas9 scissors are known to typically cut DNA, researchers from the Julius-Maximilians-Universität Würzburg (JMU) and the Helmholtz Institute for RNA-based Infection Research (HIRI), an institution of Helmholtz Centre for Infection Research, in Germany now showed that the Cas9 protein of the food-borne pathogen Campylobacter jejuni is not limited thereto.

“Instead, the protein is also capable of cutting related molecules, called ribonucleic acids – RNA, for short”, emphasizes Prof. Cynthia Sharma from the JMU Institute for Molecular Infection Biology (IMIB). “Not only that, but we found that we could also program this Cas9 to target and cut specific RNA molecules.”

RNA plays a central role in all forms of life. A major role of RNAs is to serve as messenger of genomic material in the cell: genes, specific parts of the information, stored in the DNA, are extracted by transcribing them into RNA. The RNA then serves as template for the translation of this information into proteins. The ability to target RNA instead of DNA expands how Cas9 scissors can be used. Potential uses range from controlling which genes are turned off or on to combatting human viruses that are made of RNA to rapidly detecting infectious agents.

The researchers discovered this molecular feat while looking at molecules that interact with the Cas9 in Campylobacter. These included numerous RNAs from the cell. Further analyses showed that Cas9 not only bound but could also cut the RNA in a similar way as it does with DNA – and that it could be easily instructed to cut specific RNAs.

“The finding was surprising, given that Cas9 is thought to naturally target DNA only” says Prof. Chase Beisel, who recently joined HIRI from NC State University (USA) and has been collaborating with Prof. Sharma on the project.

Possibly a general trait of Cas9 proteins

While the researchers made this finding with the Cas9 protein from Campylobacter, two other groups of researchers recently reported similar findings with Cas9s from two other bacteria. This raises the possibility that this fascinating new discovery could be a general trait of Cas9 proteins in nature.

Another question raised by this study is whether the ability of Cas9 to target RNA has any physiological roles in Campylobacter. For instance, evidence is accumulating that CRISPR-Cas systems might not only serve to combat infections, but might rather be naturally involved in controlling which genes in Campylobacter are turned on and off. Prof. Sharma and Prof. Beisel agree: “We continue to be amazed by what Cas9 is capable of doing and what new applications and technologies these insights create.”

Gaurav Dugar, Ryan T. Leenay, Sara K. Eisenbart, Thorsten Bischler, Belinda U. Aul, Chase L. Beisel, Cynthia M. Sharma: CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9; Molecular Cell, DOI: https://doi.org/10.1016/j.molcel.2018.01.032

Contact

Prof. Dr. Cynthia M. Sharma, Chair for Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Phone: +49-931/31-82560, cynthia.sharma@uni-wuerzburg.de

Prof. Dr. Chase Beisel, Helmholtz Institute for RNA-based Infection Research (HIRI), Institution of Helmholtz Centre for Infection Research, Phone: 0931/31-85346, Chase.Beisel@helmholtz-hiri.de

Helmholtz Centre for Infection Research

Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines. The HZI is a member of the German Center for Infection Research (DZIF). http://www.helmholtz-hzi.de/en

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Study clarifies kinship of important plant group
05.08.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)
05.08.2020 | Fraunhofer-Institut für Biomedizinische Technik IBMT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Manifestation of quantum distance in flat band materials

05.08.2020 | Physics and Astronomy

Discovery shows promise for treating Huntington's Disease

05.08.2020 | Health and Medicine

Rock debris protects glaciers from climate change more than previously known

05.08.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>