Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA replication protein also has a role in mitosis, cancer

14.05.2012
The foundation of biological inheritance is DNA replication – a tightly coordinated process in which DNA is simultaneously copied at hundreds of thousands of different sites across the genome. If that copying mechanism doesn't work as it should, the result could be cells with missing or extra genetic material, a hallmark of the genomic instability seen in most birth defects and cancers.

University of North Carolina School of Medicine scientists have discovered that a protein known as Cdt1, which is required for DNA replication, also plays an important role in a later step of the cell cycle, mitosis. The finding presents a possible explanation for why so many cancers possess not just genomic instability, but also more or less than the usual 46 DNA-containing chromosomes.


Mitotic spindle-chromosome attachments, marked in green, become unstable (on the right) compared to normal (on the left). Credit: Cook and Salmon labs, UNC School of Medicine

The new research, which was published online ahead of print by the journal Nature Cell Biology, is the first to definitively show such a dual role for a DNA replication protein.

"It was such a surprise, because we thought we knew what this protein's job was – to load proteins onto the DNA in preparation for replication," said Jean Cook, PhD, associate professor of biochemistry and biophysics and pharmacology at the UNC School of Medicine and senior study author. "We had no idea it also had a night job, in a completely separate part of the cell cycle."

The cell cycle is the series of events that take place in a cell leading to its growth, replication and division into two daughter cells. It consists of four distinct phases: G1 (Gap 1), S (DNA synthesis), M (mitosis) and G2 (Gap 2). Cook's research focuses on G1, when Cdt1 places proteins onto the genetic material to get it ready to be copied.

In this study, Cook ran a molecular screen to identify other proteins that Cdt1 might be interacting with inside the cell. She expected to just find more entities that controlled replication, and was surprised to discover one that was involved in mitosis. That protein, called Hec1 for "highly expressed in cancer," helps to ensure that the duplicated chromosomes are equally divided into daughter cells during mitosis, or cell division. Cook hypothesized that either Hec1 had a job in DNA replication that nobody knew about, or that Cdt1 was the one with the side business.

Cook partnered with Hec1 expert Edward (Ted) D. Salmon, PhD, professor of biology and co-senior author in this study, to explore these two possibilities. After letting Cdt1 do its replication job, the researchers interfered with the protein's function to see if it adversely affected mitosis. Using a high-powered microscope that records images of live cells, they showed that cells where Cdt1 function had been blocked did not undergo mitosis properly.

Once the researchers knew that Cdt1 was involved in mitosis, they wanted to pinpoint its role in that critical process. They further combined their genetic, microscopy and computational methods to demonstrate that without Cdt1, Hec1 fails to adopt the conformation inside the cells necessary to connect the chromosomes with the structure that pulls them apart into their separate daughter cells.

Cook says cells that make aberrant amounts of Cdt1, like that seen in cancer, can therefore experience problems in both replication and mitosis. One current clinical trial is actually trying to ramp up the amount of Cdt1 in cancer cells, in the hopes of pushing them from an already precarious position into a fatal one.

The research was funded by the National Institutes of Health. Study co-authors from UNC were Dileep Varma; Srikripa Chandrasekaran; Karen T. Reidy; and Xiaohu Wan.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: Cdt1 DNA DNA replication Hec1 Medicine UNC cell cycle computational method daughter cells

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>