Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA motor programmed to navigate a network of tracks

23.01.2012
Expanding on previous work with engines traveling on straight tracks, a team of researchers at Kyoto University and the University of Oxford have successfully used DNA building blocks to construct a motor capable of navigating a programmable network of tracks with multiple switches.

The findings, published in the January 22 online edition of the journal Nature Nanotechnology, are expected to lead to further developments in the field of nanoengineering.

The research utilizes the technology of DNA origami, where strands of DNA molecules are sequenced in a way that will cause them to self-assemble into desired 2D and even 3D structures. In this latest effort, the scientists built a network of tracks and switches atop DNA origami tiles, which made it possible for motor molecules to travel along these rail systems.

"We have demonstrated that it is not only possible to build nanoscale devices that function autonomously," explained Dr. Masayuki Endo of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), "but that we can cause such devices to produce predictable outputs based on different, controllable starting conditions."

The team, including lead author Dr. Shelley Wickham at Oxford, expects that the work may lead to the development of even more complex systems, such as programmable molecular assembly lines and sophisticated sensors.

"We are really still at an early stage in designing DNA origami-based engineering systems," elaborated iCeMS Prof. Hiroshi Sugiyama. "The promise is great, but at the same time there are still many technical hurdles to overcome in order to improve the quality of the output. This is just the beginning for this new and exciting field."

The article, "A DNA-based molecular motor that can navigate a network of tracks" by Shelley F. J. Wickham, Jonathan Bath, Yousuke Katsuda, Masayuki Endo, Kumi Hidaka, Hiroshi Sugiyama, and Andrew J. Turberfield was published online in the January 22, 2011 issue of Nature Nanotechnology.

Acknowledgements: This work was supported by the Engineering and Physical Sciences Research Council (EP/G037930/1), the Clarendon Fund, the Oxford–Australia Scholarship Fund, CREST of JST, and a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

About the iCeMS

The Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University in Japan aims to advance the integration of cell and material sciences -- both traditionally strong fields for the university -- in a uniquely innovative global research environment. The iCeMS combines the biosciences, chemistry, materials science, and physics to capture the potential power of stem cells (e.g., ES/iPS cells) and of mesoscopic sciences (e.g., porous coordination polymers). Such developments hold the promise of significant advances in medicine, pharmaceutical studies, the environment, and industry.

David Kornhauser | EurekAlert!
Further information:
http://www.icems.kyoto-u.ac.jp/e/

More articles from Life Sciences:

nachricht New substance library to accelerate the search for active compounds
14.07.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Green is more than skin-deep for hundreds of frog species
14.07.2020 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

Green is more than skin-deep for hundreds of frog species

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>