Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is DNA from mom or dad?

04.11.2013
New technique will accelerate personalized medicine

A new technique successfully takes on a longstanding challenge in DNA sequencing – determining whether a particular genetic sequence comes from an individual's mother or father.

The method, described in a Ludwig Cancer Research study in Nature Biotechnology, promises to accelerate studies of how genes contribute to disease, improve the process of matching donors with organs and help scientists better understand human migration patterns.

"The technique will enable clinicians to better assess a person's individual risk for disease. It is potentially transformative for personalized medicine," says Bing Ren, Ludwig scientist at the University of California, San Diego School of Medicine, who led the research on the new technique, called "HaploSeq."

"Current sequencing technologies are fast and rapidly getting cheaper – an individual's genome can now be sequenced in about a week for $5,000," says Ren. "In the not too distant future, everyone's genome will be sequenced. That will become the standard of care." But, he explains, "There has been a problem with this scenario." Except for the sex chromosomes, everyone has two copies of each chromosome. One copy comes from mom, and the other from dad. Current techniques cannot distinguish between the two copies of each gene and, therefore, are not very good at determining whether particular genetic differences, such as a single-letter change in the DNA, originate with an individual's mother or father – muddying genetic analyses.

Ren's new technique, a mixture of molecular biology and computational biology approaches, bypasses this problem. The method enables researchers to quickly determine which genetic variants occur together on the same stretch of chromosome and, therefore, came from the same parent. "This advance has direct implications for the utility of genomics in clinical practice and will also have profound effects on genetic research and discovery," says Ludwig scientist Siddarth Selvaraj, who contributed to the study with Ren and fellow Ludwig researcher Jesse Dixon.

More immediately, the technique will enable clinicians to better assess a person's individual risk for disease, a cornerstone of personalized medicine. For instance, people at risk for a disease such as cancer often have more than one DNA mutation. HaploSeq could enable clinicians to determine if the two mutations are on the same chromosome or on different chromosomes, which can help in risk assessment – for instance, risk may be reduced if two mutations are on the same chromosome, since the 'good' chromosome can often compensate.

Similarly, the method, with further honing, has the potential to refine the currently cumbersome process of determining whether there is a genetic match between an organ donor and recipient. A large number of genes contribute to compatibility between donor and recipient, but there is a lot of genetic variability in these genes. The new technique could help determine whether DNA differences between donor and recipient are likely to be a good match. "This will require more study," says Ren, "but by creating a DNA database, it may be possible to more accurately and expediently pair recipients and donors."

The new method will also help researchers analyze human migration and determine ancestry from their DNA sequences. "In principal," says Ren, "you could compare your genetic sequence to your neighbor's and ask if you have any recent ancestors in common. With our technique we can study each individual and how they relate to other individuals. As we accumulate data from many individuals we can more precisely determine their relationships." Such findings will also bolster an ongoing international project to assess worldwide human genetic variation, the HapMap project.

One advantage of the new technique is that it builds on common sequencing technologies and should be easily adapted for use by clinicians and researchers alike. Says Ren, "I anticipate that this new method will be quite widely used."

This study was funded by the Ludwig Institute for Cancer Research and the Roadmap Epigenome Project (U01 ES017166).

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists with a 40-year legacy of pioneering cancer discoveries. Ludwig combines basic research with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested more than $1.6 billion in life-changing cancer research through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. http://www.ludwigcancerresearch.org

Bing Ren is a member of the Ludwig Institute for Cancer Research who is based at the University of California, San Diego. More information on the Ren lab can be found here: http://www.ludwigcancerresearch.org/location/san-diego-branch/bing-ren-lab

For further information please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>