Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA methylation involved in Alzheimer's disease

18.08.2014

First large-scale study using EWAS to look at brain's chromosomal make-up in relation to Alzheimer's disease

A new study led by researchers at Brigham and Women's Hospital (BWH) and Rush University Medical Center, reveals how early changes in brain DNA methylation are involved in Alzheimer's disease. DNA methylation is a biochemical alteration of the building blocks of DNA and is one of the markers that indicate whether the DNA is open and biologically active in a given region of the human genome.

The study is published online August 17, 2014 in Nature Neuroscience.

According to the researchers, this is the first large-scale study employing epigenome-wide association (EWAS) studies—which look at chromosomal make-up and changes—in relation to the brain and Alzheimer's disease.

... more about:
»Alzheimer's »BWH »DNA »Disease »genes »markers »methylation

"Our study approach may help us to better understand the biological impact of environmental risk factors and life experiences on Alzheimer's disease," said Philip L. De Jager, MD, PhD, Program in Translational Neuropsychiatric Genomics, BWH Departments of Neurology and Psychiatry, lead study author.

"There are certain advantages to studying the epigenome, or the chemical changes that occur in DNA. The epigenome is malleable and may harbor traces of life events that influence disease susceptibility, such as smoking, depression and menopause, which may influence susceptibility to Alzheimer's and other diseases."

The researchers analyzed samples from 708 donated brains from subjects in the Religious Orders Study and Rush Memory and Aging Project, conducted by study co-author, David A. Bennett, MD, Rush Alzheimer's Disease Center in Chicago.

They found that methylation levels correlated with Alzheimer's disease in 71 of 415,848 CpG markers analyzed (these are a pair of DNA building blocks consisting of a cytosine and a guanine nucleotide that are located next to each other). These 71 markers were found in the ANK1 and RHBDF2 genes, as well as ABCA7 and BIN1 which harbor known Alzheimer's disease susceptibility variants.

Further, investigation of these CpG associations revealed nearby genes whose RNA expression was altered in brain samples with Alzheimer's disease: ANK1, CDH23, DIP2A, RHBDF2, RPL13, RNF34, SERPINF1 and SERPINF2. This suggests that the CpG associations identify genes whose function is altered in Alzheimer's disease.

Further, "because these findings are also found in the subset of subjects that are not cognitively impaired at the time of death, it appears that these DNA methylation changes may play a role in the onset of Alzheimer's disease," said De Jager. "Moreover, our work has helped identify regions of the human genome that are altered over the life-course in a way that is associated with Alzheimer's disease. This may provide clues to treating the disease by using drugs that influence epigenomic function."

###

This research was supported by the National Institutes of Health (R01AG036042, R01AG036836, R01 AG17917, R01AG15819, R01 AG032990, R01AG18023, RC2 AG036547, P30 AG10161, P50 AG016574, U01 ES017155, KL2RR024151, K25 AG041906-01, AG036039), Siragusa Foundation, Robert and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program, and Alzheimer's Research UK.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 3.5 million annual patient visits, is the largest birthing center in Massachusetts and employs nearly 15,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $650 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH continually pushes the boundaries of medicine, including building on its legacy in transplantation by performing a partial face transplant in 2009 and the nation's first full face transplant in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Marjorie Montemayor-Quellenberg | Eurek Alert!
Further information:
http://www.brighamandwomens.org/

Further reports about: Alzheimer's BWH DNA Disease genes markers methylation

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>