Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA library of apoid wasps published

15.01.2019

Another great success for the Zoologische Staatssammlung München (SNSB-ZSM): 661 species of digger wasps, closely related to the bees, were genetically investigated through DNA barcoding. Together with colleagues from the Czech Republic, Bulgaria and Canada, ZSM scientists have published the results of an international project to create a genetic library of the so-called apoid wasps (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae), also known as digger wasps, Spheciformes or “sphecids”. The article was published in the prestigious journal Molecular Ecology Resources.

Of the 661 examined wasp species 578 species occur in Europe, and 240 of them occur also in Germany. With the current DNA barcoding study, almost 90% of German digger wasps now have DNA barcodes.


Bienenwolf (Philanthus triangulum).

Foto: Christian Schmid-Egger

“This is the world’s first comprehensive genetic catalogue of this group of animals. They are closely related to the wild bees and are of great importance in the natural environment as natural antagonists of pest insects” explains Christian Schmid-Egger, first author of the digger wasp study.

“Many digger wasps feed their larvae with aphids, bugs or other harmful organisms,” says the researcher. DNA barcode releases on other wasp groups will follow and shortly it will be possible to identify all bees and wasps in Germany by their DNA barcode.

Almost 4,000 specimens were evaluated by the scientists for the study. “Through such studies of the more prominent representatives of the local fauna we also capturing the many inconspicuous, little-known species for the first time, and discover and characterise thousands of new species in Germany,” says Dr. Stefan Schmidt, project manager and responsible for the Hymenoptera in the DNA barcoding project of the ZSM.

The DNA sequencing took place within the projects “Barcoding Fauna Bavarica” ​​and “German Barcode of Life”. In these projects, the researchers from Munich identify genetic characteristics of all Bavarian or German animal species and make them freely available to experts and the public in an online library. The project is part of the “International Barcode of Life” project based in Canada. It has the ambitious goal of genetically detecting all animal species worldwide.

So far, the Munich researchers have generated barcode sequences of about 50,000 animal species worldwide. The Zoologische Staatssammlung München has contributed around a quarter of a million samples to the international project, making it a leader in Europe. In the Hymenoptera (bees, wasps and ants), the ZSM is even far ahead in the world.

“So far, we have been able to obtain barcodes of about half of the German Hymenoptera”, explains Stefan Schmidt, adding: “Being able to determine species quickly and reliably using DNA barcodes will be of crucial importance for future research projects that aim to shed light on the causes for the general decline of insects. ”

The Zoologische Staatssammlung München houses more than 22 million zoological objects and, as part of the Bavarian Natural History Collections, is among the world’s largest natural history collections. The ZSM’s DNA barcoding projects receive financial support from the Bavarian State Ministry for Science and the Arts and the Federal Ministry of Education and Research.

Wissenschaftliche Ansprechpartner:

Dr. Stefan Schmidt
Zoologische Staatssammlung München (SNSB-ZSM)
Münchhausenstr. 21
81247 München
Telefon: 089/8107 159
E-Mail: stefan.schmidt@snsb.de

Originalpublikation:

Schmid‐Egger C, Straka J, Ljubomirov T, Blagoev GA, Morinière J, Schmidt S. DNA barcodes identify 99 per cent of apoid wasp species (Hymenoptera: Ampulicidae, Crabronidae, Sphecidae) from the Western Palearctic. Mol Ecol Resour. 2018;00:1–9. doi: 10.1111/1755-0998.12963

Weitere Informationen:

http://www.zsm.mwn.de - Zoologische Staatssammlung München
http://www.snsb.de - Staatliche Naturwissenschaftliche Sammlungen Bayerns

Dr. Eva-Maria Natzer | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Airborne chemicals instantly identified using new technology developed at NTU Singapore
16.10.2019 | Nanyang Technological University

nachricht Family of crop viruses revealed at high resolution for the first time
15.10.2019 | John Innes Centre

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Quantum physics: Ménage à trois photon-style

16.10.2019 | Physics and Astronomy

Airborne chemicals instantly identified using new technology developed at NTU Singapore

16.10.2019 | Life Sciences

Always on beat: ultrashort flashes of light under optical control

16.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>