Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA as Future Electronic Components

03.07.2012
Conducting nanostructures based on metallized DNA

Our electronic devices are getting smaller and smaller while doing more and more. Using conventional materials, we will soon reach the practical limit. The electronics of tomorrow require alternatives, such as nanowires made of DNA that can serve as conductive paths and nanotransistors for miniature circuits. In the journal Angewandte Chemie, German scientists have now described a new method for the production of stable, conducting DNA nanowires.

DNA is more than a carrier of genetic information; it is also an interesting building material for nanotechnology. This is because of its extraordinary self-organizational properties. DNA is thus often used as a “mold” for the production of nanoscale structures. Its use in the assembly of electronic circuits is hampered by the fact that DNA is a very poor conductor of electricity. One way to get around this is by depositing metal onto the DNA strands.

Scientists at the RWTH Aachen and the University of Munich have now developed a new strategy for the controlled production and metallization of DNA nanostructures. Led by Ulrich Simon, the team used a DNA strand consisting of an immobilization sequence and a metallization sequence. Several such strands are strung together so that the resulting DNA is made of alternating sequences.

The immobilization sequence contains alkyne groups. These allow the DNA to be snapped into place on a silicon wafer coated with azide groups in what is known as a “click” reaction. The other DNA segment has two tasks: it is equipped with functional groups that cause the aggregation of silver particles and can also attach DNA strands to each other.

The DNA strands are stretched, deposited onto the wafers, and attached by the “click” reaction. During the subsequent metallization with silver particles, neighboring strands are simultaneously cross-linked to form multistrands. These have significantly higher structural stability than single strands. In the future, this method could also be used to integrate the DNA strands into programmable DNA architectures to allow for the positioning and binding of complex structures on prestructured substrates.

Deposition of the silver particles does not complete the metallization process. In a second step, which resembles the development of photographs, gold from a solution can be deposited onto the silver particles. Changing the duration of the gold deposition process allows for variation of the diameter of the resulting nanowires.

This new method allowed the scientists to obtain micrometer-long, electrically contactable nanowires that have potential for development into further miniaturized circuits.

About the Author
Ulrich Simon holds the Chair of Inorganic Chemistry and Electrochemistry at RWTH Aachen University and is member of the Jülich-Aachen Research Alliance (JARA). His research interests include the synthesis, the assembly, and the electrical properties of nanoscaled materials, as well as their application in nanoelectronics and biomedicine.
Author: Ulrich Simon, RWTH Aachen University (Germany),
http://www.ac.rwth-aachen.de/extern/ak-simon/ulrich_simon.htm
Title: Surface "Click" Reaction of DNA followed by Directed Metalization for the Construction of Contactable Conducting Nanostructures

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201202401

Ulrich Simon | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>