Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA barcoding of parasitic worms: Is it kosher?

15.02.2012
Museum Scientists help Orthodox Union analyze nematodes in canned sardines, capelin eggs

When rabbis from the Orthodox Union started finding worms in cans of sardines and capelin eggs, they turned to scientists at the American Museum of Natural History to answer a culturally significant dietary question: could these foods still be considered kosher?

Using a technique called "DNA barcoding" at the Museum's Sackler Institute for Comparative Genomics, researchers identified the species and life cycles of the parasitic worms to determine whether the food's preparation violated Jewish dietary laws. The results, which were recently published online in the Journal of Parasitology, show that although the food contains a handful of species of roundworms, it is kosher.

"About 75 percent of all pre-packaged food has a kosher certification," said Mark Siddall, a curator in the Museum's Division of Invertebrate Zoology. "Many people, not just those in the Jewish community, look for this certification as a symbol of quality assurance in food preparation. If you're a food provider and you lose that certification, you're going to take a large hit."

The study began last March, when rabbinical experts from the Orthodox Union, the largest organization that certifies food products for the Jewish community, brought a variety of kosher-certified sardines and capelin eggs to the Museum. Their concern: the presence of the worms might be a sign that intestinal contents were allowed to mix with sardine meat or preserved capelin eggs during food preparation. If that were the case, kosher certification would be compromised.

The key to determining whether the canned food was improperly handled is in the worms' life cycles, Siddall said. "Some species of worms live in the muscles of fish when they're in the larval stage," he said. "Other species live in the fish's intestines when they're adults. We already know the life cycles for these parasites, so all we have to do is figure out what species were present in the canned food."

To do this, researchers used genetic barcoding, a technology based on a relatively short region of a gene in the mitochondrion, an energy-producing structure located outside of the cell's nucleus, that allows researchers to efficiently identify the species from which a piece of meat—or even a leather handbag—came from.

Work by Museum scientists has long included and promoted this technique, which has identified the presence of endangered whales in Asian markets, documented fraud in the labeling of tuna, and determined the species of animals on sale in African bushmeat markets. In this case, the scientists identified a handful of different nematode species, none of which are known to live in the guts of fish during their lifecycles—therefore, there's no evidence of intestinal worms co-mingling with the fish meat or eggs.

As a result, the Orthodox Union issued a decision that the food remains kosher.

"To our knowledge, this is the first application of DNA barcoding to an obviously cultural concern," said Sebastian Kvist, one of the paper's authors and a student in the Museum's Richard Gilder Graduate School. "This paper really exemplifies what science is all about—helping people."

Other authors include Anna Phillips, from the University of Connecticut, and Alejandro Oceguera-Figuero, from the National Autonomous University of Mexico.

Funding for the Museum's DNA Barcoding Initiative is provided by the Alfred P. Sloan Foundation and the Richard Lounsbery Foundation.

Kendra Snyder | EurekAlert!
Further information:
http://www.amnh.org

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
05.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
05.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>