Diverse Landscapes Are More Productive and Adapt better to Climate Change

Switzerland from a satellite perspective: The vegetation’s average biomass production (orange: low, green: high) is strongly increased in landscapes with high biodiversity. UZH

The dramatic, worldwide loss of biodiversity is one of today's greatest environmental problems. The loss of species diversity affects important ecosystems on which humans depend.

Previous research predominantly addressed short-term effects of biodiversity in small experimental plots planted with few randomly selected plant species. These studies have shown that species-poor plant assemblages function less well and produce less biomass than species rich systems.

Extensive study with about 2,200 species in 450 landscapes

Researchers participating in the University Research Priority Programme “Global Change and Biodiversity” of the University of Zurich now demonstrate similar positive effects of biodiversity in real-world ecosystems in which mechanisms different from the ones in artificial experimental plots are at play. Using 450 different 1-km2 landscapes that spanned the entire area of Switzerland, they investigated the role of the diversity of plant, bird and butterfly species for the production of biomass, which was estimated from satellite data.

Biodiversity is important for the functioning of complex, natural ecosystems

“Our results show that biodiversity plays an essential role for the functioning of extensive natural landscapes that consist of different ecosystem types such as forests, meadows or urban areas”, study leader Pascal Niklaus from Department of Evolutionary Biology and Environmental Studies says.

The analyses showed that landscapes with a greater biodiversity were more productive and that their productivity showed a lower year-to-year variation.

Biodiversity promoted the adaptation of landscapes

The satellite data analysed by the scientists revealed that the annual growing period increased in length throughout the last 16 years, an effect that can be explained by climate warming. The prolongation in growing season was considerably larger in more biodiverse landscapes.

These relations were robust and remained important even when a range of other drivers such as temperature, rainfall, solar irradiation, topography, of the specific composition of the landscapes were considered.

“This indicates that landscapes with high biodiversity can adapt better and faster to changing environmental conditions,” Niklaus concludes.

Literature:
Jacqueline Oehri, Bernhard Schmid, Gabriela Schaepman-Strub, and Pascal A. Niklaus. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. PNAS. 4 September 2017. DOI: 10.1073/pnas.1703928114

Contact:
PD Dr. Pascal A. Niklaus
Department of Evolutionary Biology and Environmental Studies
University Research Priority Programme “Global Change and Biodiversity”
University of Zurich
Phone +41 44 635 34 13
E-mail: pascal.niklaus@ieu.uzh.ch

http://www.media.uzh.ch/en/Press-Releases/2017/biodiversity-landscapes.html

Media Contact

Kurt Bodenmüller Universität Zürich

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors