Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dispersal, the key for understanding marine biodiversity

31.10.2016

Dispersal plays a key role to connect populations, and contrastingly, its moderate limitation is one of the main processes to maintain species coexistence and promote regional biodiversity. A study recently published in Scientific Reports has explored whether neutral theory predictions with respect to marine biological connectivity are correct or not.

Under the assumptions of Stephen P. Hubbell's neutral theory of biodiversity and Motoo Kimura's neutral theory of molecular evolution, dispersal limitation and demographic changes in populations due to chance (stochasticity) determine genetic and ecology drift, respectively.


This image shows wind dispersal in pelagic species.

Credit: © Luis Quinta

So these processes would shape not only the genetic structure of the populations within the space, but also the structure of communities and their spatial beta-diversity patterns. These aspects compared have scarcely been explored empirically in the marine ecosystem, in particular.

In a recent study published in Scientific Reports, a team comprising 17 scientists from 14 centres and led by the Spanish R&D centre AZTI have gathered large data sets on the genetic structure of populations (98 benthic macroinvertebrate species and 35 plankton species) and biogeographical data (2,193 benthic macroinvertebrate species and 734 plankton species) with the aim of confirming the predictions of the Hubbell and Kimura theories in marine biological connectivity.

"Better understanding the regional patterns of the populations and communities are essential aspects in protecting and managing marine biodiversity," explained Guillem Chust, an AZTI researcher. "With these data and based on the genetic differentiations relative to geographical distance and the diversity of species that comprise a community, we have been able to estimate the dispersal distances."

The most significant result found by this research team stems from the fact that "the estimated dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity, as predicted by the type of dispersal and the connectivity of the seascape it inhabits," stressed Chust.

Specifically, according to the results of the research, in the species that inhabit or are found associated with sediment (macrobenthos) and whose larvae are not dispersed in the plankton display shorter dispersal distances than those whose larvae are dispersed in the plankton. Likewise, both groups displayed smaller dispersal scales than the plankton species (including phyto- and zoo-plankton). This range of dispersion scales is associated with the limitations of movement by the macrobenthos on the seabed, compared with the pelagic habitat where the plankton populations are more connected through the marine currents owing to passive dispersal.

These results show that "the limitation in the dispersal of individuals similarly determines the degree of connectivity not only of species between communities but also of the genes in the subpopulations of the same species, thus supporting the predictions of the neutral theories in marine biodiversity patterns," says the AZTI researcher. "Dispersal therefore emerges as a key element in generating biogeographical distribution patterns above other processes also involved, such as environmental differentiation by ecological niche and speciation through natural selection," he concluded.

###

This piece of research has been conducted within the framework of the DEVOTES European project (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status; http://www.devotes-project.eu), coordinated by Basque research institute AZTI.

Reference:

Chust, G., E. Villarino, A. Chenuil, X. Irigoien, N. Bizsel, A. Bode, C. Broms, S. Claus, M. L. Fernández de Puelles, S. Fonda-Umani, G. Hoarau, M. G. Mazzocchi, P. Mozetič, L. Vandepitte, H. Veríssimo, S. Zervoudaki, and A. Borja. 2016. Dispersal similarly shapes both population genetics and community patterns in the marine realm. Scientific Reports 6:28730.

Irati Kortabitarte | EurekAlert!

More articles from Life Sciences:

nachricht How a penalty shootout is decided in the brain
09.12.2019 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Fraunhofer starts development of refrigerant-free, energy-efficient electrocaloric heat pumps

09.12.2019 | Power and Electrical Engineering

How a penalty shootout is decided in the brain

09.12.2019 | Life Sciences

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>