Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dispersal, the key for understanding marine biodiversity

31.10.2016

Dispersal plays a key role to connect populations, and contrastingly, its moderate limitation is one of the main processes to maintain species coexistence and promote regional biodiversity. A study recently published in Scientific Reports has explored whether neutral theory predictions with respect to marine biological connectivity are correct or not.

Under the assumptions of Stephen P. Hubbell's neutral theory of biodiversity and Motoo Kimura's neutral theory of molecular evolution, dispersal limitation and demographic changes in populations due to chance (stochasticity) determine genetic and ecology drift, respectively.


This image shows wind dispersal in pelagic species.

Credit: © Luis Quinta

So these processes would shape not only the genetic structure of the populations within the space, but also the structure of communities and their spatial beta-diversity patterns. These aspects compared have scarcely been explored empirically in the marine ecosystem, in particular.

In a recent study published in Scientific Reports, a team comprising 17 scientists from 14 centres and led by the Spanish R&D centre AZTI have gathered large data sets on the genetic structure of populations (98 benthic macroinvertebrate species and 35 plankton species) and biogeographical data (2,193 benthic macroinvertebrate species and 734 plankton species) with the aim of confirming the predictions of the Hubbell and Kimura theories in marine biological connectivity.

"Better understanding the regional patterns of the populations and communities are essential aspects in protecting and managing marine biodiversity," explained Guillem Chust, an AZTI researcher. "With these data and based on the genetic differentiations relative to geographical distance and the diversity of species that comprise a community, we have been able to estimate the dispersal distances."

The most significant result found by this research team stems from the fact that "the estimated dispersal distances ranked the biological groups in the same order at both genetic and community levels, as predicted by organism dispersal ability and seascape connectivity, as predicted by the type of dispersal and the connectivity of the seascape it inhabits," stressed Chust.

Specifically, according to the results of the research, in the species that inhabit or are found associated with sediment (macrobenthos) and whose larvae are not dispersed in the plankton display shorter dispersal distances than those whose larvae are dispersed in the plankton. Likewise, both groups displayed smaller dispersal scales than the plankton species (including phyto- and zoo-plankton). This range of dispersion scales is associated with the limitations of movement by the macrobenthos on the seabed, compared with the pelagic habitat where the plankton populations are more connected through the marine currents owing to passive dispersal.

These results show that "the limitation in the dispersal of individuals similarly determines the degree of connectivity not only of species between communities but also of the genes in the subpopulations of the same species, thus supporting the predictions of the neutral theories in marine biodiversity patterns," says the AZTI researcher. "Dispersal therefore emerges as a key element in generating biogeographical distribution patterns above other processes also involved, such as environmental differentiation by ecological niche and speciation through natural selection," he concluded.

###

This piece of research has been conducted within the framework of the DEVOTES European project (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status; http://www.devotes-project.eu), coordinated by Basque research institute AZTI.

Reference:

Chust, G., E. Villarino, A. Chenuil, X. Irigoien, N. Bizsel, A. Bode, C. Broms, S. Claus, M. L. Fernández de Puelles, S. Fonda-Umani, G. Hoarau, M. G. Mazzocchi, P. Mozetič, L. Vandepitte, H. Veríssimo, S. Zervoudaki, and A. Borja. 2016. Dispersal similarly shapes both population genetics and community patterns in the marine realm. Scientific Reports 6:28730.

Irati Kortabitarte | EurekAlert!

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>