Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Provides Insights on How Plants Respond to Elevated CO2 Levels

07.07.2014

Biologists at UC San Diego have solved a long-standing mystery concerning the way plants reduce the numbers of their breathing pores in response to rising carbon dioxide levels in the atmosphere.

In a paper published in this week’s early online edition of Nature, they report the discovery of a new genetic pathway in plants, made up of four genes from three different gene families that control the density of breathing pores—or “stomata”—in plant leaves in response to elevated CO2 levels.


The discovery could provide agricultural scientists with new tools to engineer crops that can deal with droughts and high temperatures. Credit: Peter Trimming

Their discovery should help biologists better understand how the steadily increasing levels of CO2 in our atmosphere (which last spring, for the first time in recorded history, remained above 400 parts per million) are affecting the ability of plants and economically important crops to deal with heat stress and drought.

It could also provide agricultural scientists with new tools to engineer plants and crops that can deal with droughts and high temperatures like those now affecting the Southwestern United States.

“For each carbon dioxide molecule that is incorporated into plants through photosynthesis, plants lose about 200 hundred molecules of water through their stomata,” explains Julian Schroeder, a professor of biology who headed the research effort. “Because elevated CO2 reduces the density of stomatal pores in leaves, this is, at first sight beneficial for plants as they would lose less water.

However, the reduction in the numbers of stomatal pores decreases the ability of plants to cool their leaves during a heat wave via water evaporation. Less evaporation adds to heat stress in plants, which ultimately affects crop yield.”

Schroeder is also co-director of a new research entity at UC San Diego called “Food and Fuel for the 21st Century,” which is designed to apply basic research on plants to sustainable food and biofuel production.

“Our research is aimed at understanding the fundamental mechanisms and genes by which CO2 represses stomatal pore development,” says Schroeder. Working in a tiny mustard plant called Arabidopsis, which is used as a genetic model and shares many of the same genes as other plants and crops, he and his team of biologists discovered that the proteins encoded by the four genes they discovered repress the development of stomata at elevated CO2 levels.

Using a combination of systems biology and bioinformatic techniques, the scientists cleverly isolated proteins, which, when mutated, abolished the plant’s ability to respond to CO2 stress. Cawas Engineer, a postdoctoral scientist in Schroeder’s lab and the first author of the study, found that when plants sense atmospheric CO2 levels rising, they increase their expression of a key peptide hormone called Epidermal Patterning Factor-2, EPF2.

“The EPF2 peptide acts like a morphogen which alters stem cell character in the epidermis of growing leaves and blocks the formation of stomata at elevated CO2,” explains Engineer.

Because other proteins known as proteases are needed to activate the EPF2 peptide, the scientists also used a “proteomics” approach to identify a new protein that they called CRSP (CO2 Response Secreted Protease) which, they determined, is crucial for activating the EPF2 peptide.

“We identified CRSP, a secreted protein, which is responsive to atmospheric CO2 levels,” says Engineer. “CRSP plays a pivotal role in allowing the plant to produce the right amount of stomata in response to the concentration of CO2 in the atmosphere. You can imagine that such a ‘sensing and response’ mechanism involving CRSP and EPF2 could be used to engineer crop varieties which are better able to perform in the current and future high CO2 global climate where fresh water availability for agriculture is dwindling.”

The discoveries of these proteins and genes have the potential to address a wide range of critical agricultural problems in the future, including the limited availability of water for crops, the need to increase water use efficiency in lawns as well as crops and concerns among farmers about the impact heat stress will have in their crops as global temperatures and CO2 levels continue to rise.

“At a time where the pressing issues of climate change and inherent agronomic consequences which are mediated by the continuing atmospheric CO2 rise are palpable, these advances could become of interest to crop biologists and climate change modelers,” says Engineer.

Other scientists who participated in the research effort were UC San Diego biologists Majid Ghassemian and Honghong Hu, as well as Scott Peck and Jeffrey Anderson at the University of Missouri at Columbia.

Their study was supported by grants from the National Science Foundation, the National Institutes of Health and the U.S Department of Energy’s Division of Chemical Sciences, Geosciences, and Biosciences in the Office of Basic Energy Sciences.

Media Contact

Kim McDonald
858-534-7572
kmcdonald@ucsd.edu

Kim McDonald | Eurek Alert!

Further reports about: CO2 Insights atmosphere crop crops genes hormone mechanism protein proteins stomata

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>