Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of exact pymetrozine and pyrifluquinanzon target

07.05.2015

BASF and University of Göttingen scientists find new specific insecticide target protein

Scientists from BASF Crop Protection and the University of Göttingen in Germany have found a new insecticide target protein. The discovery marks the first identification of vanilloid receptors, the TRPV ion channels, as insecticide targets. The results were published in the scientific journal Neuron. They could help to better manage insecticide resistance and have implications for research and insecticide usage.

In their study, the scientists focused on the mode of action of the insecticides pymetrozine and pyrifluquinanzon. They identified a novel TRPV ion channel complex as the target protein of the two chemicals.


White fly

Photo: BASF

In insects, two TRPV channels exist, which occur together in certain stretch receptors that are present in joints, for example in the antennae and legs. By sensing mechanical stimuli, these stretch receptors provide insects with their senses of balance, hearing and coordination.

The two insecticides only act selectively on these stretch receptors because they activate an ion channel complex formed by the two TRPV channels. By activating this TRPV channel complex, the insecticides overstimulate the stretch receptors, disturbing insect locomotion and feeding. Substances with this mode of action are effective against many plant-sucking pests, particularly whiteflies and aphids.

By knowing the exact target of pymetrozine and pyrifluquinanzon, the industry can now provide better advice on spray programs to farmers. „For instance, we would not want to treat fields with these two substances one after the other. The more you attack one particluar site, the faster insects will become resistant. The findings help us to use insecticides more wisely and more sustainably,“ says Dr. Vincent Salgado, biologist at BASF Crop Protection.

„The fact that the two insecticides target a TRPV channel complex is particularly interesting,“ says the Göttingen neuroscientist Prof. Dr. Martin Göpfert. „For a long time we thought that the two insect TRPVs might form a complex in those stretch receptors, but only the insecticides allowed us to show that this is what they do.“

The study thus encompasses exciting biology: It identifies a novel ion channel complex that plays a key role in the detection of mechanical stimuli. Furthermore, the methods employed by the study can be applied to other insecticides, and they may help in the identification of new insecticides with similar modes of action.

Original publication: Alexandre Nesterov et al. TRP Channels in Insect Stretch Receptors as Insecticide Targets. Neuron 2015. Doi: 10.1016/j.neuron.2015.04.001.

Contact:
Prof. Dr. Martin Göpfert
University of Göttingen – Department of Cellular Neurobiology
Julia-Lermontowa-Weg 3, 37077 Göttingen
Phone +49 551 39-177955
Email: mgoepfe@gwdg.de
Web: www.cellneuro.uni-goettingen.de/index.php

Friederike Wurth
BASF SE Crop protection
Phone +49 621 60-28182
Email: friedrike.wurth@basf.com

Prof. Dr. Martin Göpfert | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>