Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new protein gives insight into a long-standing plant immunity mystery

09.12.2019

When a plant senses an invading pathogen, it activates a molecular signaling cascade that switch on its defense mechanisms. One such mechanism involves sacrificing host cells to the pathogen. This is a tightly controlled process that involves the work of plant proteins to ensure that the sacrificial cells are only killed if the pathogen is attacking. This process, called the cell death response, ensures that only a few host cells die.

Tomatoes employ this method when they are invaded by a bacterial pathogen known as Pseudomonas syringae pv. tomato, which causes speck disease.


Mai1 acts upstream of M3Kα and MKK2. Representative photographs of the cell death observed 5 days postagroinfiltration of the cell death elicitors SlM3Kα or constitutive-active NtMKK2DD into N. benthamiana leaves that were silenced using the indicated VIGS constructs.

Credit: Robyn Roberts et al.

Scientists understand how the tomato recognizes this pathogen and know many of the plant proteins that are involved in the signaling cascade, but until recently they did not know what linked these two processes, a mystery that has been around for decades.

In a recent paper published in Molecular Plant-Microbe Interactions, scientists introduce a protein, called Mai1, that plays a role in this missing link.

They found that when they muted the expression of Mai1, the plants could no longer defend themselves against pathogens through the cell death response. As a result, these plants were more susceptible to bacterial infection.

They also found that Mai1 directly interacts with a protein at the top of the signaling cascade and upregulates its activity, suggesting that Mai1 plays a key role in activating the cascade.

"Our research suggests that Mai1 has a central role in immunity that likely can not be substituted by other proteins," according to first author Robyn Roberts.

"Not only does this work give us better insight into how plants defend themselves on the molecular level, but this work reveals a key protein that is broadly involved in immunity. It is possible that Mai1 could serve as a target for crop improvement in the future."

This research also showed that the muting of Mai1 stunted the plants, leaving them with brittle leaves and heightened sensitivity to mild stress, including pesticide application. This further shows the importance of Mai1, suggesting that the protein might also be involved in both immunity and plant growth and development.

###

For additional details, read "Mai1 Protein Acts Between Host Recognition of Pathogen Effectors and Mitogen-Activated Protein Kinase Signaling" published in the November issue of Molecular Plant-Microbe Interactions.

Media Contact

Ashley Bergman Carlin
acarlin@scisoc.org
651-994-3832

 @plantdisease

http://www.apsnet.org 

Ashley Bergman Carlin | EurekAlert!
Further information:
http://dx.doi.org/10.1094/MPMI-05-19-0121-R

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Scientists find far higher than expected rate of underwater glacial melting

29.01.2020 | Earth Sciences

What's in your water?

29.01.2020 | Power and Electrical Engineering

Screening sweet peppers for organic farming

29.01.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>