Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Could Lead to a New Animal Model for Hepatitis C

30.01.2009
Rockefeller University scientists have identified a protein that allows the hepatitis C virus to enter mouse cells, a finding that represents the clearest path yet for developing a much-needed vaccine as well as tailored treatments for the 170 million people across the globe living with the tenacious, insidious and rapidly changing virus.

During its career, the potentially fatal hepatitis C virus has banked its success on a rather unusual strategy: its limitations.

Its inability to infect animals other than humans and chimpanzees has severely hampered scientists in developing a useful small animal model for the disease.

But now, in a breakthrough to be published in the January 29 advance online issue of Nature, Rockefeller University scientists have identified a protein that allows the virus to enter mouse cells, a finding that represents the clearest path yet for developing a much-needed vaccine as well as tailored treatments for the 170 million people across the globe living with the tenacious, insidious and rapidly changing virus.

By using a genetic screen, the group, led by Charles M. Rice, head of the Laboratory of Virology and Infectious Disease, identified a human protein, called occludin, that makes mouse cells susceptible to the virus. The discovery means that scientists now have the complete list of cellular factors — a total of four — that are required for the virus to enter nonhuman cells.

The hepatitis C virus exclusively targets human liver cells, suggesting that these cells express genes that allow uptake of the virus, genes that are not expressed in other human and nonhuman cells, explains Rice. In past years, three proteins — CD81, CLDN1 and SR-BI — were identified as having key roles in shuttling the virus into cells, but something was clearly missing. Rice's group found that even when they engineered mouse cells to overexpress all three proteins, the cells still denied the virus entry.

The discovery of occludin, however, has changed that. When Rice and his colleagues engineered mouse and human cell lines to express all four proteins, they showed that each cell line became infectible with the virus. To further establish occludin's role as a required entry factor, the group showed that human liver cells naturally express high levels of occludin, and that by silencing its expression, they could give these once highly susceptible liver cells the ability to completely block infection.

"You know, you sort of have to get lucky," says Rice, who is also Maurice R. and Corinne P. Greenberg Professor at Rockefeller. "You've got these three factors you know are important, but you could have 10 other human factors that could have been necessary for hepatitis C virus entry. This work shows that's not the case."

In their DNA screen, the team, including Alexander Ploss, a research associate in the lab, and Matthew J. Evans, currently at Mount Sinai School of Medicine in New York, first cloned all the genes that were expressed in liver cells and then delivered them to mouse cells. "Then, going through an iterative screening process, we honed in on the genes that made the mouse cells permissive," says Ploss, who spearheaded the project with Evans.

Since mice and humans each have a species-specific version of the four factors, the group used hamster cells to see which combination of factors did the best job at making the cells infectible. They found that in the case of two of the proteins, occludin and CD81, only the human versions worked; for SR-BI and CLDN1, the human and mouse versions did an equally good job. These experiments not only suggest that there may be more than one potential animal model, but also that there are several specific combinations of entry factors that could generate them.

"This work provides a clear foundation upon which we can now begin to construct an animal model for the uniquely human pathogen," says Rice. "This is only a first step but in terms of creating an animal model for hepatitis C, it's a big leap forward."

Thania Benios | Newswise Science News
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>