Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of hair-cell roots suggests the brain modulates sound sensitivity

09.03.2012
The hair cells of the inner ear have a previously unknown "root" extension that may allow them to communicate with nerve cells and the brain to regulate sensitivity to sound vibrations and head position, researchers at the University of Illinois at Chicago College of Medicine have discovered. Their finding is reported online in advance of print in the Proceedings of the National Academy of Sciences.

The hair-like structures, called stereocilia, are fairly rigid and are interlinked at their tops by structures called tip-links.

When you move your head, or when a sound vibration enters your ear, motion of fluid in the ear causes the tip-links to get displaced and stretched, opening up ion channels and exciting the cell, which can then relay information to the brain, says Anna Lysakowski, professor of anatomy and cell biology at the UIC College of Medicine and principal investigator on the study.

The stereocilia are rooted in a gel-like cuticle on the top of the cell that is believed to act as a rigid platform, helping the hairs return to their resting position.

Lysakowski and her colleagues were interested in a part of the cell called the striated organelle, which lies underneath this cuticle plate and is believed to be responsible for its stability. Using a high-voltage electron microscope at the National Center for Microscopy and Imaging Research at the University of California, San Diego, Florin Vranceanu, a recent doctoral student in Lysakowski's UIC lab and first author of the paper, was able to construct a composite picture of the entire top section of the hair cell.

"When I saw the pictures, I was amazed," said Lysakowski.

Textbooks, she said, describe the roots of the stereocilia ending in the cuticular plate. But the new pictures showed that the roots continue through, make a sharp 110-degree angle, and extend all the way to the membrane at the opposite side of the cell, where they connect with the striated organelle.

For Lysakowski, this suggested a new way to envision how hair cells work. Just as the brain adjusts the sensitivity of retinal cells in the eye to light, it may also modulate the sensitivity of hair cells in the inner ear to sound and head position.

When the eye detects light, there is feedback from the brain to the eye. "If it's too bright the brain can say, okay, I'll detect less light -- or, it's not bright enough, let me detect more," Lysakowski said.

With the striated organelle connecting the rootlets to the cell membrane, it creates the possibility of feedback from the cell to the very detectors that detect motion. Feedback from the brain could alter the tension on the rootlets and their sensitivity to stimuli. The striated organelle may also tip the whole cuticular plate at once to modulate the entire process.

"This may revolutionize the way we think about the hair cells in the inner ear," Lysakowski said.

The study was supported by the grants from the National Institutes of Deafness and other Communication Disorders, the American Hearing Research Foundation, the National Center for Research Resources, and the 2008 Tallu Rosen Grant in Auditory Science from the National Organization for Hearing Research Foundation.

Graduate student Robstein Chidavaenzi and Steven Price, an electron microscope technologist, also contributed by identifying three of the proteins composing the striated organelle and demonstrating how they arise during development. Guy Perkins, Masako Terada and Mark Ellisman from the National Center for Microscopy and Imaging Research in Biological Systems, University of California, San Diego, also contributed to the study.

[Editor's Note: Photos and video animation of the 3-D structure of the stereocilia (hair cells) is available at newsphoto.lib.uic.edu/v/lysakowski/]

For more information about the University of Illinois Medical Center, visit www.uillinoismedcenter.org

NOTE: Please refer to the institution as the University of Illinois at Chicago on first reference and UIC on second reference. "University of Illinois" and "U. of I." are often assumed to refer to our sister campus in Urbana-Champaign.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Researchers at Mainz University develop a sustainable method for extracting vanillin from wood processing waste
04.06.2020 | Johannes Gutenberg-Universität Mainz

nachricht Small Protein, Big Impact
04.06.2020 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Researchers at Mainz University develop a sustainable method for extracting vanillin from wood processing waste

04.06.2020 | Life Sciences

A storage battery for the entire world

04.06.2020 | Power and Electrical Engineering

A remote control for neurons

04.06.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>