Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about growth factor can be breakthrough for cancer research

02.09.2008
A research team at the Ludwig Institute and Uppsala University has discovered an entirely new signal path for a growth factor that is of crucial importance for the survival and growth of cancer cells.

This discovery, published in today’s issue of Nature Cell Biology, opens up an entirely new landscape for research on breast and prostate cancer, among other types.

Our cells’ ability to understand signals from various growth factors is critical for normal fetal development. The aggressiveness and capacity for survival in cancer cells are also governed by a number of growth factors, with transforming growth factor b (TGF-b) playing a prominent role. In the present study, researchers at the Ludwig Institute for Cancer Research and the Department of Genetics and Pathology, Uppsala University, have identified an entirely new signal path that is regulated by TGF-b.

“This discovery is of tremendous importance for our ability to identify what signal paths TGF-b uses to inhibit the growth of cells, or to stimulate the ability of cancer cells to survive and metastasize,” says Marene Landström, who directed the study.

TGF-b conveys its signal to the inside of the cell via receptors bound to the cell membrane in a way that is similar in the great majority of animals. Just over ten years ago, scientists discovered so-called Smad proteins, which serve as unique messengers for the active TGF-b signal. These proteins are activated when phosphate groups bind to them in a manner that is dependent on enzyme activity (of serine-threonine kinases) in the TGF-b receptors.

The new signal path that the research team has now identified is regulated quite independently of this serine-threonine kinase activity, which makes the discovery published in the article extremely interesting. The study shows that the receptors are used instead to activate another enzyme, TRAF6, which binds to the complex of receptors. TRAF6 is a so-called ubiquitin-ligase, which, when activated, places short little protein chains on itself and other proteins.

TRAF6 therefore functions as a switch that can determine what signals should be turned on in the cell. TRAF6 is used by TGF- to be specifically able to activate a kinase called TAK1, which subsequently activates other so-called stress-activated kinases, leading to cell death.

“The discovery that TGF- makes use of TRAF6 to activate signal paths in cells opens up an entirely new landscape for future research. The makes it possible to develop new treatment strategies for advanced cancers that are dependent on TGF- , for example in advanced cases of breast and prostate cancer.”

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>