Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Essential Genes for Drug-Resistant Bacteria Reveals New, High-Value Drug Targets

17.09.2012
Biomedical scientists collaborating on translational research at two Buffalo institutions are reporting the discovery of a novel, and heretofore unrecognized, set of genes essential for the growth of potentially lethal, drug-resistant bacteria.

The study not only reveals multiple, new drug targets for this human infection, it also suggests that the typical methods of studying bacteria in rich laboratory media may not be the best way to identify much-needed antimicrobial drug targets.

The paper (http://mbio.asm.org/content/3/4/e00113-12) focuses on a Gram-negative bacteria called A. baumanni. It is published in the current issue of mBio, as an 'editor's choice' paper. The findings may be relevant to other Gram-negative bacteria as well.

A. baumannii is responsible for a growing number of hospital-acquired infections around the world. It can be fatal to patients with serious illnesses, the elderly and those who have had surgeries. Infections also have been seen in soldiers returning from Iraq and Afghanistan with battlefield injuries.

"Generally, healthy people don't get infected," explains lead author Timothy C. Umland, PhD, research scientist at Hauptman-Woodward Medical Research Institute (HWI) and professor of structural biology in the University at Buffalo School of Medicine and Biomedical Sciences. "But what's challenging about A. baumannii is that it can survive in the hospital environment and is very hard to eradicate with common disinfectants, leading to healthcare-associated infections."

Typically, the way that essential genes for microbial pathogens are found is by growing the bacteria under optimal conditions, says co-author Thomas A. Russo, MD, professor in the UB departments of medicine and microbiology and immunology. Genes found to be essential for growth are then entered into the Database of Essential Genes (DEG), which contains genes considered essential for the sustenance of each organism.

The researchers at HWI and UB decided to try to better understand what A. baumannii needs in order to grow when infecting patients.

"Laboratory conditions create a different type of environment from what happens in patients," Umland says, "where certain nutrients the bacteria need will be present in very low amounts and where the bacteria encounter immune and inflammatory responses. We were purposely trying to test for genes that are important for growth in these more realistic environments."

The team performed a genetic screen designed to identify bacterial genes absolutely required for the growth and survival of A. baumannii in human ascites, a peritoneal fluid that accumulates under a variety of pathologic conditions.

"We found that nearly all of these 18 genes had not been identified as essential in the DEG because they weren't necessary for growth in an ideal laboratory environment," explains Russo. "This is a large set of genes that has been flying under the radar."

He adds: "The biggest concern is that quite a few strains of A. baumannii are resistant to nearly all anti-microbial drugs and some strains are resistant to all of them. To make things worse, there are no new agents being tested for human use in the drug pipeline that are active against A. baumannii. This is a huge problem."

Not only do the new genes suggest brand new, high-value drug targets for A. baumannii infections, but the genes that have been identified may be relevant to other Gram-negative infections.

"So far, our computational models show that these genes seem to be conserved across Gram-negative infections, meaning that they may lead to new drugs that would be effective for other drug-resistant infections as well," says Umland.

The researchers who collaborated on the study are now pursuing antibacterial drug discovery efforts focused on the newly identified bacterial targets.

The research was funded by grants from the Telemedicine and Advance Technical Research Center of the U.S. Army Medical Research and Materiel Command, an interdisciplinary grant from UB and a VA Merit Review grant from the U.S. Department of Veterans Affairs.

Other co-authors are: L. Wayne Schultz, PhD, of HWI and UB, and Ulrike MacDonald, Janet M. Beanan and Ruth Olson of the UB Department of Medicine, the Department of Microbiology and Immunology and UB's Witebsky Center for Microbial Pathogenesis.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>