Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Essential Genes for Drug-Resistant Bacteria Reveals New, High-Value Drug Targets

17.09.2012
Biomedical scientists collaborating on translational research at two Buffalo institutions are reporting the discovery of a novel, and heretofore unrecognized, set of genes essential for the growth of potentially lethal, drug-resistant bacteria.

The study not only reveals multiple, new drug targets for this human infection, it also suggests that the typical methods of studying bacteria in rich laboratory media may not be the best way to identify much-needed antimicrobial drug targets.

The paper (http://mbio.asm.org/content/3/4/e00113-12) focuses on a Gram-negative bacteria called A. baumanni. It is published in the current issue of mBio, as an 'editor's choice' paper. The findings may be relevant to other Gram-negative bacteria as well.

A. baumannii is responsible for a growing number of hospital-acquired infections around the world. It can be fatal to patients with serious illnesses, the elderly and those who have had surgeries. Infections also have been seen in soldiers returning from Iraq and Afghanistan with battlefield injuries.

"Generally, healthy people don't get infected," explains lead author Timothy C. Umland, PhD, research scientist at Hauptman-Woodward Medical Research Institute (HWI) and professor of structural biology in the University at Buffalo School of Medicine and Biomedical Sciences. "But what's challenging about A. baumannii is that it can survive in the hospital environment and is very hard to eradicate with common disinfectants, leading to healthcare-associated infections."

Typically, the way that essential genes for microbial pathogens are found is by growing the bacteria under optimal conditions, says co-author Thomas A. Russo, MD, professor in the UB departments of medicine and microbiology and immunology. Genes found to be essential for growth are then entered into the Database of Essential Genes (DEG), which contains genes considered essential for the sustenance of each organism.

The researchers at HWI and UB decided to try to better understand what A. baumannii needs in order to grow when infecting patients.

"Laboratory conditions create a different type of environment from what happens in patients," Umland says, "where certain nutrients the bacteria need will be present in very low amounts and where the bacteria encounter immune and inflammatory responses. We were purposely trying to test for genes that are important for growth in these more realistic environments."

The team performed a genetic screen designed to identify bacterial genes absolutely required for the growth and survival of A. baumannii in human ascites, a peritoneal fluid that accumulates under a variety of pathologic conditions.

"We found that nearly all of these 18 genes had not been identified as essential in the DEG because they weren't necessary for growth in an ideal laboratory environment," explains Russo. "This is a large set of genes that has been flying under the radar."

He adds: "The biggest concern is that quite a few strains of A. baumannii are resistant to nearly all anti-microbial drugs and some strains are resistant to all of them. To make things worse, there are no new agents being tested for human use in the drug pipeline that are active against A. baumannii. This is a huge problem."

Not only do the new genes suggest brand new, high-value drug targets for A. baumannii infections, but the genes that have been identified may be relevant to other Gram-negative infections.

"So far, our computational models show that these genes seem to be conserved across Gram-negative infections, meaning that they may lead to new drugs that would be effective for other drug-resistant infections as well," says Umland.

The researchers who collaborated on the study are now pursuing antibacterial drug discovery efforts focused on the newly identified bacterial targets.

The research was funded by grants from the Telemedicine and Advance Technical Research Center of the U.S. Army Medical Research and Materiel Command, an interdisciplinary grant from UB and a VA Merit Review grant from the U.S. Department of Veterans Affairs.

Other co-authors are: L. Wayne Schultz, PhD, of HWI and UB, and Ulrike MacDonald, Janet M. Beanan and Ruth Olson of the UB Department of Medicine, the Department of Microbiology and Immunology and UB's Witebsky Center for Microbial Pathogenesis.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Gut microbiome regulates the intestinal immune system, researchers find
19.12.2018 | Brown University

nachricht Greener days ahead for carbon fuels
19.12.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>