Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery about DNA repair could lead to improved cancer treatments

11.09.2013
Medical researchers at the University of Alberta have made a basic science discovery that advances the understanding of how DNA repairs itself. When DNA becomes too damaged it ultimately leads to cancer.

Faculty of Medicine & Dentistry researcher Mark Glover and his colleagues published their findings in the peer-reviewed journal, Structure (Cell Press), earlier this summer.

For years, scientists thought two key proteins involved in DNA repair operated in exactly the same way. Glover's team discovered how the proteins operate and communicate is vastly different — information that could lead to improved cancer treatments.

Glover explains that a protein known as BRCA1 acts like a hallway monitor — constantly scanning DNA for damage. At the first sign of problems, this protein figures out what kind of help is needed, and "radios" in a cleanup crew of other proteins.

A second protein, known as TopBP1, ensures that DNA can copy itself when needed. When this process stalls due to DNA damage, this protein also calls in a cleanup crew. But Glover likens its method of communication to tweets, rather than radio.

"The two proteins may be related and look very similar, but their roles and the way they communicate are in fact very different, which was surprising to us," Glover says. "Each protein plays a role in recognizing damaged regions of DNA, but the problem they each solve is different.

"The question now is how can we use this information to try to improve cancer therapies? Could we temporarily knock out cancer DNA's ability to repair itself from radiation damage? Could we administer radiation at a point that prevents cancer DNA from copying itself? Could we inhibit the activity of proteins that are normally trying to run around and fix the damage?

"Maybe some of these ideas could ultimately translate into less radiation or chemotherapy needed for patients, if the treatment can be more targeted," says Glover, who works in the Department of Biochemistry.

His team is continuing its research in this area, and wants to learn more about the role of the TopBP1 protein and why it favours communicating with a specific protein. They also want to conduct tests in their lab to see if the use of certain medications could alter the way these proteins work in a way that could result in new or improved cancer treatments.

Glover's lab members make 3-D images of proteins, making it easier to understand and see how proteins work.

The research was funded by the Canadian Cancer Society and the National Institutes of Health.

Raquel Maurier | EurekAlert!
Further information:
http://www.ualberta.ca

Further reports about: 3-D image DNA TopBP1 cancer treatments key protein

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>