Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could influence methods to control bacteria on medical and other surfaces

03.07.2017

Flexible flagella fight flow: Bacteria change a liquid's properties and escape entrapment

A flexible tail allows swimming bacteria to thin the surrounding liquid and to free themselves when trapped along walls or obstacles. This finding could influence how bacterial growth on medical, industrial, and agricultural surfaces is controlled. The new study by researchers at Penn State University, published in a recent issue of the Royal Society journal Interface, used mathematical models to understand how bacteria with flagella -- a collection of spinning hairs used for propulsion that act together like a tail -- overcome forces from the flow of a liquid and navigate complex environments.


New research has revealed how bacteria thin the liquid they are swimming through in order to free themselves when trapped by walls or other obstacles. This finding could influence methods to control bacterial growth on medical, industrial, and agricultural surfaces. The new study by researchers at Penn State University, published in a recent issue of the Royal Society journal Interface, used mathematical models to understand how the bacteria's flagella -- the spinning hairs they use like a tail for propulsion -- help them to overcome the force of a flowing liquid in order to navigate complex environments.

Credit: Alissa Eckert and Jennifer Oosthuizen, CDC

"Bacteria are the most abundant organisms on the planet and are often found in liquids," said Mykhailo Potomkin, research associate in mathematics at Penn State and an author of the study. "We know from recent experimental studies that bacteria can reduce the effective viscosity -- the internal friction -- of a solution, which helps them move more easily.

"In solutions where the concentration of bacteria is large, this is due to collective movement of bacteria effectively thinning the solution, but a decrease of viscosity was also observed in dilute solutions where bacteria are less abundant," Potomkin added. "This effect has been explained by bacterial tumbling -- random changes in direction of the bacteria -- but a similar decrease in viscosity was also reported in strains of bacteria that don't perform this tumbling behavior. Our work suggests that the bacteria's flagella may be responsible."

Using a mathematical model, the research team demonstrated that flexible flagella allow bacteria to overcome local forces between molecules, reducing viscosity and effectively thinning the liquid. This understanding might have important implications for the creation of biomimetic materials -- man-made materials that mimic biology -- to alter properties of a solution for biomedical or industrial purposes.

"In order to understand whether we can control the viscosity of a solution, we need to understand how bacteria control it," said Potomkin. "Flagella play a key role in this control. We also investigated how bacteria use flagella to navigate a more complex environment by introducing walls into our model. Bacteria tend to accumulate on walls or obstacles and they often get stuck swimming along walls. We demonstrated that having flexible elastic flagella can sometimes help bacteria to escape such entrapment, for example when nutrients are added to the solution and increase bacteria motility."

Bacteria that build up on biomedical devices (e.g. catheters) and industrial and agricultural pipes and drains in the form of biofilms are difficult to remove and can be resistant to biocides and antibiotics. Understanding how bacteria can escape from walls could eventually inform ways to control or prevent the formation of these often damaging biofilms. Another application may be the ability to develop better ways to trap bacteria, for example to identify types of bacteria in a liquid or to filter them out.

"Our results indicate that if you want to trap bacteria, simple traps may not be enough," said Igor Aronson, holder of the Huck Chair and Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State and senior author on the paper. "We would need to produce something more sophisticated. Using elastic flagella is one way motile bacteria respond to their environment to persist in harsh conditions."

In addition to Potomkin and Aronson, the research team includes Leonid Berlyand, professor of mathematics at Penn State, and Magali Tournus, postdoctoral researcher at Penn State at the time of the research and current lecturer at Aix Marseille University in France. The research was funded by the National Institutes of Health and supported by the U.S. Department of Energy and the Huck Institutes of the Life Sciences.

###

CONTACTS

Igor Aronson: isa12@psu.edu; (814) 867-6260
Barbara K. Kennedy: bkk1@psu.edu, (814) 863-4682

Media Contact

Barbara K. Kennedy
BarbaraKennedy@psu.edu
814-863-4682

 @penn_state

http://live.psu.edu 

Barbara K. Kennedy | EurekAlert!

Further reports about: bacteria flagella materials navigate surfaces viscosity

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>