Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery in cell signaling could help fight against melanoma

11.05.2012
The human body does a great job of generating new cells to replace dead ones but it is not perfect. Cells need to communicate with or signal to each other to decide when to generate new cells. Communication or signaling errors in cells lead to uncontrolled cell growth and are the basis of many cancers.
At The University of Texas Health Science Center at Houston (UTHealth) Medical School, scientists have made a key discovery in cell signaling that is relevant to the fight against melanoma skin cancer and certain other fast-spreading tumors.

The scientists report that they have discovered why a class of drug called BRaf inhibitors that are widely used to treat melanomas do not always work and most importantly how these drugs may potentially accelerate cancer growth in certain patients. Melanoma, according to the American Cancer Society, accounts for almost 9,000 deaths each year. The scientistsf research was published online ahead of the June 5 print issue of Current Biology, which is published by Cell Press.

gThis information may aid the development of more effective anti-cancer drugs and better inform the choice of new combinations of drugs,h said John Hancock, M.B, B.Chir, Ph.D., the studyfs senior author, John S. Dunn Distinguished University Chair in Physiology and Medicine, chairman of the Department of Integrative Biology and Pharmacology and interim director of the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases at the UTHealth Medical School.

Growth signals are transmitted from a cellfs surface to the nucleus by a chain of proteins that form a signaling pathway. The command for cells to divide to generate new cells is relayed by a chain of four proteins (Ras ¨ BRaf ¨ MEK ¨ ERK). All cells have this pathway and it does an effective job of generating new cells most of time.

Problems happen when a mutation occurs in one of the first two proteins in the chain - both of which lock the signaling pathway in the gonh position. The good news is that doctors have drugs that block signaling from the second protein known as BRaf. These are the BRaf inhibitors, which are successful at treating melanomas with mutant BRaf proteins.

The not-so-good news is that doctors cannot block the signal from the first protein called Ras. Researchers therefore studied in vivo what happens when BRaf inhibitors are applied to human cancer tissues with Ras mutations.

gSurprisingly recent studies found that BRaf inhibitors do not block signaling in melanoma cells with Ras mutations. In fact, the drugs actually enhance the abnormal signaling activity. Our work now describes the mechanism for this seemingly paradoxical enhanced signaling activity,h said Kwang-jin Cho, Ph.D., the studyfs lead author and research fellow at the UTHealth Medical School.

Most melanomas isolated from patients turn out to have either a BRaf or Ras mutation but rarely have both. Ras mutations cause an otherwise normal BRaf protein to stay switched on.

gOur study also emphasizes the importance of genetic testing of melanomas before using BRaf inhibitors. Our study may also help design a better drug,h Cho said.

The study, which is titled gRaf inhibitors target Ras spatiotemporal dynamics,h was supported by the Cancer Prevention & Research Institute of Texas.

Hancock and Chofs co-authors from the UTHealth Medical School are: Jin-Hee Park, senior research assistant; Sravanthi Chigurupati, senior research assistant; Dharini van der Hoeven, Ph.D., research fellow; and Sarah J. Plowman, Ph.D., assistant professor.

Other collaborators include: Rinshi S. Kasai, Ph.D., and Akihiro Kusumi, Ph.D., Kyoto University, Japan; and Sonja J. Heidorn, Ph.D., and Richard Marais, Ph.D., Institute for Cancer Research, London.
Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uthouston.edu/

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>