Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disabling infection-fighting immune response speeds up wound healing in diabetes

19.06.2015

One of the body's tools for fighting off infection in a wound may actually slow down the healing process, according to new research by a team of Harvard University, Boston Children's Hospital, and Penn State University scientists. In a study published online in Nature Medicine on June 15, 2015, the researchers show that they can speed up wound healing in diabetic mice by preventing immune cells called neutrophils from producing structures called NETs (neutrophil extracellular traps) that trap and kill bacteria.

"In the fight against bacterial infection, NETs cause collateral damage that slows healing," said Yanming Wang, associate professor of biochemistry and molecular biology at Penn State and a member of the research team.


One of the body's tools for fighting off infection in a wound may actually slow down the healing process, according to new research published online in Nature Medicine on June 15, 2015, by a team that includes scientists at Penn State University, Harvard University, and Boston Children's Hospital. The researchers have speeded up wound healing in diabetic mice by preventing immune cells called neutrophils from producing structures called NETs (neutrophil extracellular traps) that trap and kill bacteria. In this image the structure colored in blue is chromatin -- the condensed form of DNA that the cell remodels to form chromosomes. The enzyme PAD4 decondenses chromatin by loosening up the interaction between DNA and special proteins called histones. The histones modified by PAD4 are shown in fuchsia. This process helps to form both a bacteria-killing NET -- which is comprised of infection-combatting white blood cells called neutrophils -- and the fluffy, scattered ball that comprises a blood clot.

Credit: Wang lab, Penn State University. (Image originally was published in the Journal of Cell Biology).

NETs are thought to reduce the risk of infection in a wound but they also form a dense, toxic mesh that interferes with the mobilization of new healthy cells and hinders tissue repair. The process is even more of a problem in individuals with diabetes, whose neutrophils produce more NETs. As a result, delayed wound healing is a common complication of both type 1 and type 2 diabetes.

To see how diabetes increases a neutrophil's ability to produce NETs, the researchers examined neutrophil cells from patients with either type 1 or type 2 diabetes. They found that these neutrophil cells contained four times the normal amount of the PAD4 enzyme -- a protein that catalyzes the production of NETs. Further experiments revealed that neutrophils from healthy donors or mice that were exposed to excessive glucose -- mimicking diabetes -- also were more likely to release NETs than neutrophils that were exposed to normal glucose levels.

Diabetic mice in the study had more NETs in wounds and healed more slowly than normal mice. However, when the team examined diabetic mice that lacked the PAD4 enzyme they found that the wounds of these mice healed more quickly. "Neutrophils of individuals with diabetes are primed to form NETs by high levels of PAD4, but when we eliminate or control the expression of the PAD4 enzyme in mice with diabetes, we can prevent NETs from forming and speed up healing," Wang said. "It remains to be tested if pharmacological intervention of PAD4 activity will benefit the healing process."

"NETs predispose patients to inflammation, heart disease, and deep-vein thrombosis -- dangerous blood clots that form within veins deep inside the body -- all of which are elevated in patients with diabetes," said the senior author of the study Denisa Wagner, senior investigator of the Program in Cellular and Molecular Medicine at Boston Children's Hospital and Edwin Cohn Professor of Pediatrics at Harvard Medical School. "Any injury that causes inflammation will result in the production of NETs, and we think that if the injury involves skin repair, NETs will hinder the repair process."

When the skin is cut or broken, the body mobilizes a complicated array of cells and proteins to stop bleeding, prevent infection by triggering inflammation, and start the healing process. As part of the inflammatory response, neutrophils, which ingest and destroy bacteria, expel their own chromatin -- a mix of DNA and associated proteins -- in the form of NETs within the wound.

To see whether breaking up the NETs would have an effect similar to preventing their production, the research team treated mice with DNase 1 -- an enzyme that breaks up DNA and therefore can destroy NETs. After three days, wounds on DNase 1-treated diabetic animals were 20 percent smaller than on untreated animals. Interestingly, DNase 1 treatment appeared to accelerate wound healing in healthy mice, as well.

"The anti-microbial function of NETs may have been more important in the days before antibiotics were common and infections were a more pressing concern for human health," said Wang. "Now, as humans live longer lives, we may be able to reduce the detrimental effects of NETs in chronic diseases like diabetes, rheumatoid arthritis, and heart disease by controlling expression of the PAD4 enzyme."

###

In addition to Wang and Wagner, other members of the research team are Siu Ling Wong, Melanie Demers, and Kimberly Martinod from Boston Children's Hospital and Harvard Medical School; Maureen Gallant from Boston Children's Hospital; and Allison B. Goldfine and C. Ronald Kahn from the Joslin Diabetes Center at Harvard Medical School.

The study was supported by the American Diabetes Association (Innovation Award 7-13-IN-44); three institutes of the National Institutes of Health: the National Heart Lung and Blood Institute (grant number R01HL102101), the National Cancer Institute (grant number R01HL136856), and the National Institute of Diabetes and Digestive and Kidney Diseases (grant number R01DK031036); and a GlaxoSmithKline/Immune Disease Institute Alliance Fellowship.

CONTACTS

Yanming Wang: yuw12@psu.edu@psu.edu, 814-441-7404

Barbara Kennedy (PIO): science@psu.edu, 814-863-4682

www.psu.edu

Barbara Kennedy | EurekAlert!

Further reports about: DNase Diabetes PAD4 enzyme immune immune response neutrophils wound healing

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>