Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Differences in Jet Lag Severity Could be Rooted in How Circadian Clock Sets Itself

17.10.2011
It’s no secret that long-distance, west-to-east air travel – Seattle to Paris, for example – can raise havoc with a person’s sleep and waking patterns, and that the effects are substantially less pronounced when traveling in the opposite direction.

Now researchers, including a University of Washington biologist, have found hints that differing molecular processes in an area of the brain known as the suprachiasmatic nucleus might play a significant role in those jet lag differences.

Human circadian clocks operate on a period about 20 minutes longer than one day and so must be synchronized to the light-dark cycle of the solar day, delaying or advancing their time in response to light.

Someone whose clock runs faster than a solar day must delay it on a daily basis, and someone whose clock runs slower than a solar day must advance it. These daily adjustments happen naturally, and without our noticing, but the process is disrupted by sudden large shifts in the light-dark cycle because of a radically new geographic location.

Researchers previously learned that delaying the circadian clock happens through different pathways in the suprachiasmatic nucleus than advancing the clock does. The new research shows that, at a molecular level, the mechanisms responsible for resetting the expression of the “clock genes” are drastically different.

“We have known for decades that, in humans and other organisms, advances are always much harder to achieve than delays. For example, compare jet lag going to Europe with that coming back,” said Horacio de la Iglesia, a UW associate professor of biology.

“One of the reasons may be that these two forms of resetting the clock involve different molecular mechanisms at the clock level,” he said.

de la Iglesia and William Schwartz of the University of Massachusetts Medical School are corresponding authors of a paper detailing the research, published online recently (Oct. 3) in the Proceedings of the National Academy of Sciences. Co-authors are Mahboubeh Tavakoli-Nezhad, Christopher Lambert and David Weaver, also of the University of Massachusetts Medical School.

The researchers exposed hamsters to two light-dark cycles, one of 23.33 hours and the other at 24.67 hours, to test the mechanisms that advance and delay the circadian clock. A one-hour light pulse in the shorter cycle acted as dawn, but in the longer cycle it acted as dusk. The scientists confirmed that the pulse of light at dawn advanced the animals’ circadian clocks, while the light at dusk delayed the clocks.

The results suggest that different molecular mechanisms in the suprachiasmatic nucleus are at work when the circadian clocks are advanced than when the clocks are delayed, de la Iglesia said.

That could provide clues for understanding how circadian clocks work in nocturnal animals in natural conditions, and it could help in understanding potential remedies for jet lag.

The work was supported by a grant from the National Institutes of Health.

For more information, contact de la Iglesia at 206-616-4697, 206-616-3932 or horaciod@uw.edu, or Schwartz at 508-856-5666 or william.schwartz@umassmed.edu.

An abstract of the paper is available at http://www.pnas.org/content/early/2011/09/29/1107848108.abstract

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>