Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are diatoms so successful?

26.06.2009
Researchers from the Alfred Wegener Institute find hints to this question in the algae's evolution.

Diatoms play a key role in the photosynthesis of the oceans and are therefore intensively studied. Researchers from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association together with international collaborators have made a new discovery regarding the diatoms' photosynthesis.

It has so far been believed that diatoms have inherited their photosynthetic capabilities exclusively from red algae. The molecular biologists have now shown that a significant part of the diatoms' genes originates from green algae. The photosynthetic cellular structure of the diatoms, the plastids, therefore combine features both from their green and red algae predecessors which could explain their enormous success in the oceans.

The results are presented in the current issue of the periodical "SCIENCE".

Photosynthesis is the basis of all life on earth and it is an almost equal capacity on land and in oceans. Complex green plants are mainly responsible on land, whereas algae are responsible in the oceans - particularly unicellular species. Diatoms are the most important group contributing about 40 % of marine photosynthesis. Land plants, red alga, and green algae fundamentally differ in their evolutionary history from diatoms: they descend from a symbiosis of photosynthetic cyanobacterium within a eukaryotic cell. The process is called endosymbiosis because one cell lives as a symbiont in another cell. As a result, the photosynthetic organelles in plant and algal cells, the plastids, developed.

Diatoms possess plastids, too, but these developed through the merging of two higher cells: a eukaryotic host cell incorporated a photosynthetic unicellular red alga. So-called secondary plastids developed in this secondary endosymbiosis. It has so far been believed that the absorbing host cell was colourless and not photosynthetic. "It was possible for us to show, within an international collaboration, that the incorporating host cell already had chloroplasts similar to those of the green algae," explains Klaus Valentin, researcher from the Alfred Wegener Institute for Polar and Marine Research. Actually, more traces of green than red algal descent were found in the diatom genomic material. It could therefore be postulated that the plastids of current diatoms are a hybrid of two types of plastids, those from red and green algae. "Diatoms therefore possess probably more metabolic potential than each of the two predecessors alone which could explain the huge success of the diatoms in the oceans," continues Valentin. "Their plastids could virtually unite 'the best of both worlds'."

In the meantime, Valentin and his colleague Bànk Beszteri have also discovered traces of green endosymbiosis in other marine algae which originated similar to diatoms from secondary endosymbiosis. Among these are for instance brown algae. "Our next goal is to find out what kind of advantage has been gained by the marine algae through this form of symbiosis. We intend to quantify this advantage and to identify metabolic pathways which exist additionally in diatoms or which function better than in red or green algae alone. We then perhaps can understand why plants with secondary plastids are so successful in the oceans while plants with primary plastids won the race on land."

Name of the Science-Paper: "Genomic footprints of a cryptic plastid endosymbiosis in diatoms. During their evolution the dominant phytoplankters in the world's oceans sampled genes from both red and green algae." (Authors: Ahmed Moustafa, Bánk Beszteri, Uwe G. Maier, Chris Bowler, Klaus Valentin, Debashish Bhattacharya)

Your contact person is Dr Klaus Valentin (phone: ++49 (0) 471 4831-1452 or mobile 0173 3241067, email: Klaus.Valentin@awi.de) and in the public relations department of the Alfred Wegener Institute Folke Mehrtens (phone: ++49 (0) 471 4831-2007; email: medien@awi.de).

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and provides international science with important infrastructure, e.g. the research icebreaker Polarstern and research stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of 16 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>