Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dialysis: Blood Protein as a Risk Factor

12.03.2013
A modified blood protein increases the mortality risk in patients undergoing dialysis treatment. This has been reported by researchers from Würzburg and Boston in the journal "Science Translational Medicine". They also have an idea about how the risk factor might be successfully dealt with.

Diabetes and high blood pressure can lead to impaired renal function and even to complete kidney failure in the end. This is a life-threatening situation for the people concerned.

They need to undergo dialysis treatment regularly, but the artificial blood filtration can only replace about 10 percent of normal renal function. Therefore, dialysis patients cannot consider themselves out of danger until they receive a kidney transplant. Due to the scarce supply of donor organs, however, not everyone is fortunate enough to get a transplant.

Why is it that kidney failure has such fatal consequences? The reason lies in the fact that the waste products, which should be excreted from the body via the urine, then accumulate in the blood. This increases the risk of additional conditions, such as atherosclerosis (formation of plaques in the arteries), heart attacks and strokes.

Harmless urea gives rise to the generation of toxic cyanate

In patients with kidney disease, one of the substances accumulating in the blood is urea, an originally harmless metabolic waste product. "However, urea can be converted in the body to a toxic cyanate, which binds to the blood proteins," explains Christiane Drechsler, a medical scientist at the Department of Nephrology of the University Hospital of Würzburg.

The dangerous cyanate also binds to albumin, which is one of the most important blood proteins. This has drastic consequences: The carbamylated albumin – as the modified albumin is known by scientists – now tends to stick to defective parts in the blood vessels. This aggravates the process of atherosclerosis, thus further reducing the survival chances of dialysis patients.

Amino acids can decrease the risk

"We have found a significant correlation: A higher amount of carbamylated albumin in the blood is associated with reduced survival chances of the respective patients," says Christiane Drechsler. The concentration of the dangerous albumin, in turn, increases with decreasing amino acid levels in the blood. This is because cysteine, histidine, lysine and some other amino acids are obviously able to inhibit the formation of the "high-risk albumin" – as has also been demonstrated by the Würzburg scientists and their colleagues from Boston (USA). The study evaluated data on 1,255 dialysis patients.

Pilot study with 200 patients planned

The results are published in the current issue of the journal "Science Translational Medicine". They open up the prospect of a new therapeutic approach that might be used to increase the life expectancy of kidney and dialysis patients: The administration of amino acids as a preventive measure. "We are now going to determine whether this method works in a pilot study currently in preparation, involving about 200 dialysis patients," says Professor Christoph Wanner, who heads the Department of Nephrology at the University Hospital of Würzburg.

The three main application possibilities yielded by the study

The study of the Würzburg and Boston researchers not only points to a new way of improving the survival rates of dialysis patients. It also provides two further benefits, as Christiane Drechsler explains: "The carbamylated albumin is a suitable candidate to serve as a prognostic marker in diagnostics. Furthermore, it might become a marker for assessing the quality of dialysis treatment over prolonged periods of time – similar to the HbA1c-test for diabetics."

"Carbamylation of Serum Albumin as a Risk Factor for Mortality in Patients with Kidney Failure", Anders H. Berg, Christiane Drechsler, Julia Wenger, Roberto Buccafusca, Tammy Hod, Sahir Kalim, Wenda Ramma, Samir M. Parikh, Hanno Steen, David J. Friedman, John Danziger, Christoph Wanner, Ravi Thadhani, S. Ananth Karumanchi. Science Translational Medicine, 6 March 2013, Vol. 5 Issue 175, p. 175ra29, DOI: 10.1126/scitranslmed.3005218

Contact person

Dr. Dr. Christiane Drechsler, Department of Internal Medicine I, University Hospital of Würzburg, T (0931) 201-39972, drechsler_c@klinik.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>