New diagnostic advance seen for head, throat cancer

This “transcriptional regulator” is called CTIP2, and in recent research has been demonstrated to be a master regulator that has important roles in many biological functions, ranging from the proper development of enamel on teeth to skin formation and the possible treatment of eczema or psoriasis.

In the newest study, published today in PLoS ONE, a professional journal, scientists found for the first time that levels of CTIP2 were more than five times higher in the “poorly differentiated” tumor cells that caused the most deadly types of squamous cell carcinomas in the larynx, throat, tongue and other parts of the head. There was a high correlation between greater CTIP2 expression and the aggressive nature of the cancer.

Head and neck squamous cell cancers are the sixth most common cancers in the world, the researchers said in their study, and a significant cause of mortality. In 2008, cancers of the oral cavity and pharynx alone accounted for 35,310 new cases in the United States and 7,590 deaths. They have been linked to such things as tobacco use and alcohol consumption.

“Serious head and throat cancer is pretty common, and mortality rates from it haven't improved much in 20 years, despite new types of treatments,” said Gitali Indra, an assistant professor in the OSU College of Pharmacy. “With these new findings, we believe it should be possible to create an early screening and diagnostic tool to spot these cancers earlier, tell physicians which ones need the most aggressive treatments and which are most apt to recur.”

It's also possible the work may lead to new therapeutic approaches, researchers say.

“It's not completely clear yet whether the higher levels of CTIP2 expression are a consequence of cancer, or part of the cause,” said Arup Indra, also an OSU assistant professor of pharmacy. “However, we strongly suspect that it's causally related. If that's true, then therapies that could block production of CTIP2 may provide a new therapeutic approach to this type of cancer.”

That this genetic regulator could be involved in both skin development and these types of cancer makes some sense, the scientists said – both originate from epithelial cells.

It's also possible, the study found, that CTIP2 works to help regulate the growth of what is believed to be a cancer “stem” or “progenitor” cell, which has a greater potential to generate tumors through the stem cell processes of self-renewal and differentiation into multiple cell types. Therefore, targeting cancer stem cells holds promise for improvement of survival and quality of life of cancer patients.

This research was partly supported by a $1.5 million grant from the National Institutes of Health. The work was done in collaboration with researchers in the Cancer Institute in Strasbourg, France.

Editor's Note: A digital image is available to illustrate this story. The figure in “A” shows a very low level of CTIP2 expression in normal human epithelia, while “B” shows a significant increase in expression in aggressive head and neck cancer: http://oregonstate.edu/dept/ncs/photos/hnscc.JPG

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors