Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Reveals Invisible World Teeming with Microscopic Algae

07.10.2010
It just got easier to pinpoint biological hot spots in the world’s oceans where some inhabitants are smaller than, well, a pinpoint.

Microscopic algae are called phytoplankton and range from one to hundreds of microns in size – the smallest being 1/100th the size of a human hair. But as tiny as they may be, communities of the phytoplankton south of Vancouver Island, British Columbia, are big players when it comes to carbon: They take up 50 percent of the carbon dioxide going from the atmosphere into the oceans there.

“We thought that had to be a mistake at first,” says Francois Ribalet, a UW post-doctoral researcher in oceanography and lead author of a Proceedings of the National Academy of Sciences paper on the discovery published online in September.

“They are such small cells to do so much,” he says.

Phytoplankton, like plants on land, take up carbon from carbon dioxide during photosynthesis to build cells. Phytoplankton anchor the oceanic food web so where one finds a lot of phytoplankton, one usually finds a healthy collection of fish and animals. If not eaten, phytoplankton die and sink, carrying their carbon with them. Worldwide, ocean phytoplankton consume as much carbon dioxide as the Earth’s forests and land plants combined.

“Being able to readily detect and track blooms of these small-celled phytoplankton is critical for understanding their impact in the oceans and global carbon cycle,” Ribalet says.

SeaFlow, a device being developed at the UW, is making that task easier, he says. The instrument is a flow cytometer that measures the size and pigment composition of each single phytoplankton present in a sample at a rate of thousands of cells per second.

Typically biologists with traditional cytometers looked for phytoplankton using tablespoon-sized samples of water collected 10 to 50 miles or more from each other.

SeaFlow can sample seawater continuously making it possible to analyze samples every three minutes or two samples per mile traveled, says Jarred Swalwell, a research engineer with oceanography and lead developer. That’s because the instrument taps into the system found on board most oceanographic research vessels that supplies running seawater to shipboard labs for such things as keeping specimens alive.

In this way SeaFlow collects more samples in a day than most scientists gather on an entire cruise, Swalwell says. And SeaFlow sensors and banks of computers, not scientists with traditional cytometers and microscopes, sort the characteristics of phytoplankton communities to determine what’s present.

SeaFlow takes five minutes to do what used to take him two months, Ribalet says.

A prototype of the device revealed the biological hotspot off Vancouver Island and, for the first time, a marine ecotone, something oceanographers knew must exist but had no way to locate before now.

Ecotones are where different habitats overlap, where a prairie and forest meet, for example, or a river and estuary intersect. Ectones are rich with species because plants and animals from both ecosystems might be found there, as well as those adapted specifically to this hybrid environment. The ecotone discovered by Ribalet and colleagues is a 40-mile-wide region where ocean water rich with nitrates met coastal water rich with iron and where not just one, but five oceanic phytoplankton communities were detected taking full advantage of the carbon and nutrients concentrated there.

“This was just unexpected diversity,” Ribalet says. “It flies in the face of the textbooks.”

Ribalet and Swalwell imagine additional marine ecotones and biological hot spots could be detected if SeaFlows were installed on various ships and set up in a way to automatically alert scientists when phytoplankton abundance takes an interesting turn. Just such a SeaFlow set up has already been permanently mounted on the UW’s vessel, the Thomas G. Thompson.

Other co-authors on the paper from the UW are professor of oceanography Virginia Armbrust, research scientist Adrian Marchetti, doctoral research assistants Katherine Hubbard and Colleen Durkin, and research engineer Rhonda Morales; Kristina Brown and Philippe Tortell from University of British Columbia; and Marie Robert from Fisheries and Oceans Canada. The work was funded by the Gordon and Betty Moore Foundation, National Science Foundation, National Institutes of Environmental Health and Sciences and the National Oceanic and Atmospheric Administration.

For more information:
Ribalet, 206-221-7258, ribalet@uw.edu
Website: http://armbrustlab.ocean.washington.edu/people/ribalet
Swalwell, 206-221-7258, jarred@uw.edu
Website: http://armbrustlab.ocean.washington.edu/node/226
SeaFlow homepage: http://seaflow.ocean.washington.edu/
YouTube: Census for the very small
http://armbrustlab.ocean.washington.edu/node/245
The colors red, orange and yellow indicate marine areas with abundant microscopic algae, some of which would have gone undiscovered using typical discrete sampling methods. The biological hotspot depicted in the North Pacific in this video, for instance, was between places the ship stopped to sample. It was revealed only because of new UW technology able to continuously sample and quickly analyze seawater while a ship is underway.

Video credit: Francois Ribalet

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>