Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Development of antibiotic resistance more predictable than expected

05.07.2012
New research approach can help predict the ‘tenability’ of antibiotics

Research by Wageningen University, part of Wageningen UR, has shown that the development of bacteria with resistance against the antibiotic cefotaxime occurs more often and more predictably than was previously assumed.


3D enzyme. The 48 mutations found in the enzyme TEM-1 beta-lactamase that increase resistance against the antibiotic cefotaxime. The colours indicate the increase in cefotaxime. The inset shows the same enzyme, turned 180 degrees horizontally.

Bacterial populations were found to have many mutations that increase resistance and therefore have a negative effect on public health. Moreover, the effects are such that it can be predicted that the development of bacterial strains with a resistance against cefotaxime will progress in a similar way in different patients from different locations.

Together with German colleagues, the Wageningen scientists developed a research approach which will allow them to predict whether, and if so how, resistant bacterial strains will develop for other antibiotics as well.

The Wageningen scientists studied the main enzyme that causes resistance against the antibiotic cefotaxime. The only function of this beta-lactamase enzyme is the breakdown of so-called beta-lactam antibiotics, which kill bacteria by preventing the production of their cell walls. Martijn Schenk and Arjan de Visser, genetic scientists at Wageningen University, were surprised by the number of mutations with a positive effect on the resistance against cefotaxime. De Visser: “Of all the mutations we found in this beta-lactamase, more than three per cent caused an increase in the resistance against the antibiotic. To top it all off, we discovered that the mutations with a strong effect also had a much greater impact than we had anticipated. Based on theoretical arguments and previous observations, we had estimated the effects on the resistance against the antibiotic to be significantly lower.”

The presence in particular of mutations with a very strong effect on resistance to the antibiotic facilitates the prediction of the development of resistant bacterial strains.

Collaboration with a group of physicists in Germany enabled the Wageningen scientists to study the genetic findings quantitatively, as Martijn Schenk explains: “The physicists built computer models that helped us as geneticists to move forward. We were able to show that it is probable that the bacteria will become resistant against the antibiotic in a similar way in various patients throughout the world.”

According to De Visser the approach taken can also be used to predict the ‘tenability’ of other antibiotics, as the combination of computer models with knowledge about the number and effect of the mutations provides concrete leads.

http://www.wur.nl/UK/newsagenda/news/PPSG_bacteria_resistance.htm

Attached files

3D enzyme. The 48 mutations found in the enzyme TEM-1 beta-lactamase that increase resistance against the antibiotic cefotaxime. The colours indicate the increase in cefotaxime. The inset shows the same enzyme, turned 180 degrees horizontally.

Table. The Wageningen scientists found an unexpectedly large amount of mutations that considerably increased the resistance of the enzyme to the antibiotic.

Full bibliographic informationSchenk, MF, IG Szendro, J Krug and JAGM de Visser. 2012. Quantifying the adaptive potential of an antibiotic resistance enzyme. PLoS Genetics 8(6): e1002783

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Life Sciences:

nachricht TU Bergakademie Freiberg researches virus inhibitors from the sea
27.03.2020 | Technische Universität Bergakademie Freiberg

nachricht The Venus flytrap effect: new study shows progress in immune proteins research
27.03.2020 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>