Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing new molecular tools to study the life and death of a cancer cell

16.02.2011
Basic and translational research on cancer, and development of new cancer therapeutics, has focused on different aspects of cancer cellular function. One area of focus is the life and death of a cancer cell.

Apoptosis, also known as programmed cell death, is a fundamental process of cells including cancer cells. The signal transduction pathways of apoptosis involve many different proteins and their interactions with each other.

Protein-protein interactions involved in these apoptotic signals, like those in many other biological processes, are often determined or influenced by a short fragment of protein sequence or even certain key amino acid residues with important functional or structural roles in the protein-protein interface. For biomedical and pharmaceutical scientists, developing new molecular tools to understand and control the functions of these small protein fragments or residues and the biological and pathological processes that they mediate is a task and challenge of both fundamental interest and practical value.

In the work published in the February issue of Experimental Biology and Medicine, Huang, Zhang, Reed, An and their coworkers have developed new synthetic molecules as models to study the structural and functional role of the proline residue and tetrapeptide sequence important for the regulation of cancer cell apoptosis by the XIAP protein. The work was carried out jointly by the laboratories of Ziwei Huang and Jing An, formerly at the Sanford-Burnham Medical Research Institute in La Jolla, California and now the Cancer Research Institute and Department of Pharmacology of the State University of New York (SUNY) Upstate Medical University in Syracuse, New York, Liangren Zhang at Peking University School of Pharmaceutical Sciences in Beijing, China, and John Reed at Sanford-Burnham Medical Research Institute.

Dr. Huang, who led this international research team, stated "research on protein-protein interactions and their synthetic modulators has become a new frontier for biomedical research and pharmaceutical development. We have chosen a proline containing tetrapeptide as the model to develop new peptidomimetic molecules to study the role of proline and tetrapeptide in the binding of XIAP protein and potential inhibition of XIAP mediated protein-protein interactions critical for apoptotic signaling in cancer cells. Our results suggest that these tetrapeptide analogs can be further developed into new molecular tools to analyze the mechanisms of protein-protein interactions and signal transduction pathways of XIAP in cancer and potential leads to develop anticancer drugs. This study combined the techniques in structure-based drug design, chemistry, and cancer biology and expertise and resources at institutions in America and China. It is an example of international collaboration to apply chemistry to biology and medicine with the long term goal of finding new anticancer therapeutics".

The research team used the crystal structure of a known tetrapeptide AVPI derived from Smac protein bound to XIAP protein as the guide to design a series of peptidomimetic analogs containing a conformationally constrained proline mimetic exo-2-azabicyclo[2.2.1]heptane-3-carboxylic acid. Structural analyses using nuclear magnetic resonance (NMR) and molecular modeling showed that some of these analogs can mimic the conformations of the parent tetrapeptide. Using a fluorescence polarization assay, one of these analogs was shown to be potent like the parent tetrapeptide in binding XIAP protein. This raises the possibility that such an analog may inhibit the antiapoptotic function of XIAP (a protein inhibitor of apoptosis), thus removing the roadblock of the death signal to kill a cancer cell.

Dr. John Reed, who led the binding and biological studies of these molecules in La Jolla, California, said, "The progress made through our collaborations with Dr. Huang and colleagues is a component of a substantial commitment we have made at Sanford-Burnham to discovery and design of small molecule chemical inhibitors of IAP family proteins as potential therapeutics for cancer. We are eager to advance the work towards drug-like leads that might provide renewed hope for those suffering from advanced malignancies."

The design and synthesis of the peptide analogs described in the study are the beginning steps in the long process of research and development of suitable pharmaceutical agents capable of penetrating a cancer cell membrane to reach the XIAP target and triggering the signaling pathway that causes the death of cancer cells in vivo. While further modifications and studies are needed on these peptide analogs in order to show their practical values as cell permeable anticancer agents, the present study of these analogs is of basic research interest for understanding the role of proline and conformation of prolyl peptide bond in mediating the biological function of a protein. It is known that the two different conformational isomers (cis and trans isomers) of the prolyl peptide bond can mediate distinct function of the protein. Many studies in the past of proline and proline mimics show either a mixture of cis and trans isomers or purely cis isomer. In this study, the proline mimic displayed strictly the trans conformation. The interesting conformational and functional effects of the synthetic unnatural mimic of proline discovered here suggest an alternative probe of prolyl isomerization in biology and that such a proline mimic can be applied to study the role of proline and proline containing sequence in other protein-protein interactions involved in a wide range of biological functions.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This elegant study by Ziwei Huang and colleagues explores the role of proline containing peptides in inhibiting the anti-apoptotic function of XIAP. This will potentially lead the way to new designer anti-cancer drugs. The article is a wonderful example of the interdisciplinary and international research that is the focus of our journal".

Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com.

Dr. Ziwei Huang | EurekAlert!
Further information:
http://www.sebm.org

More articles from Life Sciences:

nachricht Bad food? How mesozooplankton reacts to blue-green algae blooms
17.01.2019 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Artificially produced cells communicate with each other: Models of life
17.01.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Artificially produced cells communicate with each other: Models of life

17.01.2019 | Life Sciences

Velcro for human cells

16.01.2019 | Life Sciences

Kiel physicists discover new effect in the interaction of plasmas with solids

16.01.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>