Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer proteins provide new information about the body's signal processes

29.01.2014
Proteins play a fundamental role in almost all biological processes. They consist of chains constructed of up to 20 different amino acids, and their composition, structure and function are controlled by the genetic code.

Brilliant minds at the Center for Biopharmaceuticals are now attempting to rewrite the core function of proteins by making alterations in their molecular backbone, for example. By combining biological and chemical methods, researchers are able to design semi-synthetic proteins with almost no regard to the limitations of nature:

"Proteins can be regulated to perform specific biochemical tasks. We have used a technology that allows us to make changes to the molecular backbone of the protein and have thus created 22 completely new designer proteins on the basis of recognised material. Using advanced chemical-biological methods, we made the minuscule changes to the backbone of one of the most frequently occurring protein domains – a kind of fixed, independent module that features in a range of proteins. We then examined how the designer proteins bind to other proteins in the body, which allowed us to analyse the role of the specific protein domain in the body's vital signal processes," relates Søren W. Pedersen, postdoc.

All the cells in the body communicate via receptor proteins that are located in the cell membrane. This activates proteins inside the cell, causing specific effects which, in turn, stimulate the body to execute a variety of functions.

"Our designer proteins show us precisely how and where a bond is formed. This provides unique molecular understanding of the protein domain and a number of key protein bonds in the organism. For example the designer proteins bind to a range of receptors in the body – receptor interactions that are important targets for pharmaceuticals intended to treat stroke, pain and depression. The new findings mean that in the long term, we will be able to design pharmaceuticals that bind more strongly and more accurately to specific sites in the organism."

The fundamental findings have just been published in the scientific journal Nature Communications.

From 'on/off switch' to 'advanced dimmer'

Pharmaceuticals generally function by binding to a specific receptor that is involved in a given illness process – thus halting the damaging effect. Unfortunately, this strategy often generates side effects as the process simultaneously shuts down a number of beneficial functions. In recent years, interest has therefore arisen in a different strategy in which the pharmaceutical does not affect the receptor directly, but alters the interactions that the receptor has with proteins inside the cell. In other words, instead of simply switching the function of the receptor on and off, the objective is now to control parts of the receptor's effects. It is here that designer proteins can come to play a key role:

"The capacity to manipulate proteins has led to important breakthroughs in biotechnology and biomedicine. Proteins can often target specific processes in the cells with a high degree of accuracy – and at the Center for Biopharmaceuticals we are combining chemical synthesis and biological processes to find out more about the molecular interactions that may be of significance to biological pharmaceuticals," explains Professor Kristian Strømgaard, head of the Center for Biopharmaceuticals at the University of Copenhagen.

Contact:

Professor Kristian Strømgaard
Phone: 35 33 61 14
Proteins are composed of amino acids linked together in chains. In all organisms – from bacteria to human beings – there are 20 different amino acids available as 'building blocks' for the proteins.

It has conventionally been possible to use one of two methods to manufacture human proteins in the laboratory. The first method is biological and involves using gene technology to introduce the gene into single-cell organisms such as bacteria and yeast, or into mammal cells. The alternative is to create a protein chemically, which involves linking the amino acids together one by one until the required peptide or protein has been formed.

Each technology has its advantages and drawbacks. The production of proteins in bacteria and yeast is relatively simple to escalate to industrial scale, but gene technology is limited to the use of the 20 amino acids for which the genes code. The chemical method is not limited to the 20 amino acids, but it is expensive and can only be used to make small proteins containing up to 50 amino acids. Most of the 20,000 proteins in the human body are much larger.

Researchers at the Center for Biopharmaceuticals are combining biology and chemistry to make semi-synthetic proteins. This approach entails making only a part of the protein in bacteria or yeast, while the remaining part is created using chemical synthesis. The two sections are then 'glued together' to form the final designer protein.

Kristian Strømgaard | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Contact lenses with medicine and sugar
18.04.2019 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Better healing for eardrum injuries? - new adhesive structures for medical applications
17.04.2019 | INM - Leibniz-Institut für Neue Materialien gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

Im Focus: Newly discovered mechanism of plant hormone auxin acts the opposite way

Auxin accumulation at the inner bend of seedling leads to growth inhibition rather than stimulation as in other plant tissues.

Increased levels of the hormone auxin usually promote cell growth in various plant tissues. Chinese scientists together with researchers from the Institute of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets

18.04.2019 | Physics and Astronomy

Contact lenses with medicine and sugar

18.04.2019 | Life Sciences

First astrophysical detection of the helium hydride ion

18.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>