Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer organelles in cells produce synthetic proteins

29.03.2019

Scientists create membraneless organelles to build proteins in living cells / Incorporation of synthetic amino acids allows completely new chemical functionality

A research team led by biophysical chemist Professor Edward Lemke has engineered a designer organelle in a living mammalian cell in a new complex biological translation process. The created membraneless organelle can build proteins from natural and synthetic amino acids carrying new functionalities.


Construction of an organelle in a living cell for protein biosynthesis

ill./©: Gemma Estrada Girona


The genetic code is made up of three-letter sequences called codons. Each one codes for an amino acid, except for three 'stop' codons, which signal that an amino acid chain is complete. The Lemke group was able to selectively reprogram one of these stop codons so that it coded for a new amino acid, which does not belong to the 20 that occur naturally in living organisms.

ill./©: Aleks Krolik, EMBL

For example, scientists might incorporate fluorescent building blocks into proteins via the organelle that allow a glimpse inside the cell using imaging methods.

The research work now published in Science was a collaboration of Johannes Gutenberg University Mainz (JGU), the Institute of Molecular Biology (IMB) and the European Molecular Biology Laboratory (EMBL).

Organelles are compartments in cells that, like the nucleus or the mitochondria, perform specific functions. The Lemke group has now created a new compartment in which special proteins can be synthesized.

"Figuratively speaking, we look for a corner in the cell where we build our house and then bring in some of the ribosomes that are present in the cell," explained Professor Edward Lemke. The biosynthesis of proteins takes place at the ribosomes. Using the genetic code, the messenger RNA (mRNA) is translated into the sequence of amino acids for the protein to be newly formed.

Translation is a very complex process that cannot easily be contained in an organelle surrounded by a membrane. Therefore, Lemke's team drew inspiration for creating the designer organelle from phase separation, i.e., the process responsible for the formation of membraneless organelles in vivo, such as nucleoli or stress granules.

Cells use phase separation to concentrate specific proteins and RNAs locally as well as to build new membraneless compartments. "Our membraneless organelle is virtually an open reaction center," said Lemke.

This allows protein biosynthesis to occur in a well-defined place, which is important for working with synthetic amino acids. Researchers have already been able to create a new protein with the help of a synthetic, non-natural amino acid. However, incorporating the protein nonspecifically throughout the cell causes high cellular stress and the cell may be severely affected. The new orthogonal translation method avoids this problem.

Large pool of natural and synthetic amino acids for protein synthesis on designer organelles

"Our organelle can make proteins by using synthetic non-canonical amino acids. Currently, we know of more than 300 different non-canonical amino acids – compared to 20 naturally occurring. This means that we are no longer restricted to the latter ones," said Gemma Estrada Girona, who together with Christopher Reinkemeier is first author of the Science paper.

Human proteins consist of the 20 naturally occurring, so-called canonical amino acids. In addition, there are a number of non-canonical amino acids, which are not found in regular human proteins. However, the extension of the genetic code allows the incorporation of these non-canonical amino acids and the new designer organelle is able to expand the genetic code selectively.

This translates the RNA differently within the organelle than in the rest of the cell. "We have taken nature as our model, especially the membraneless nucleolus, which is involved in the synthesis of RNA in the nucleus," explained Lemke. "We were surprised that we can actually build such a complicated structure and function with just a few steps."

The new concept may serve as a platform for the design of other organelles and the building of semisynthetic cells and organisms. "Our tool can be used to engineer translation and maybe other cellular processes like transcription and post-translational modifications, too. This might even allow us to engineer new types of organelles that extend the functional repertoire of natural complex living systems," said Christopher Reinkemeier.

Designer organelles combine the fields of biology and chemistry to achieve a completely new functionality. One field of application is the aforementioned fluorescence method in imaging, another could be in the production of antibodies for therapeutic purposes. First of all, Lemke and his group aim to engineer minimal designer organelles to minimize the impact on the physiology of the healthy organism.

Edward Lemke is Visiting Group Leader at the European Molecular Biology Laboratory, Professor of Synthetic Biophysics at Johannes Gutenberg University Mainz, and Adjunct Director at the Institute of Molecular Biology. He also coordinates the new Priority Program "Molecular Mechanisms of Functional Phase Separation" (SPP 2191), funded by the German Research Foundation.

Video:
https://youtu.be/dCb07aM9Itk
Synthetic organelle inside cells: The video shows a 3D rendering of immunofluorescence images of a synthetic organelle, which is based on phase separation and motor proteins. Nuclei of transfected cells are show in green, ribosomes in cyan, microtubules in yellow, and the orthogonal tRNA synthetase in magenta. The video shows that ribosomes as well as microtubules can be found inside the organelle.
©: Christopher Reinkemeier

Images:
http://www.uni-mainz.de/bilder_presse/10_imp_biophysik_designer_organellen_01.jp...
Construction of an organelle in a living cell for protein biosynthesis
ill./©: Gemma Estrada Girona

http://www.uni-mainz.de/bilder_presse/10_imp_biophysik_translation.jpg
The genetic code is made up of three-letter sequences called codons. Each one codes for an amino acid, except for three 'stop' codons, which signal that an amino acid chain is complete. The Lemke group was able to selectively reprogram one of these stop codons so that it coded for a new amino acid, which does not belong to the 20 that occur naturally in living organisms.
ill./©: Aleks Krolik, EMBL

Related links:
https://www.grc.uni-mainz.de/prof-edward-a-lemke/ – GRC Fellow Professor Dr. Edward A. Lemke
https://www.embl.de/research/units/scb/lemke/index.html – Lemke group "High Resolution Studies of Protein Plasticity" at the European Molecular Biology Laboratory (EMBL)
https://www.imb.de/research/lemke/research/ – Lemke group "Synthetic Biophysics of Protein Disorder" at the Institute of Molecular Biology (IMB)
http://www.spp2191.com/ – DFG Priority Program "Molecular Mechanisms of Functional Phase Separation"

Read more:
http://www.uni-mainz.de/presse/aktuell/5059_ENG_HTML.php – press release "Dark proteome as the focus of a new Priority Program funded by the German Research Foundation" (1 June 2018)

Wissenschaftliche Ansprechpartner:

Professor Dr. Edward Lemke
Synthetic Biophysics
Institute of Molecular Physiology (IMP) and Institute of Molecular Biology (IMB)
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
e-mail: edlemke@uni-mainz.de
http://www.lemkelab.com
https://imp.biologie.uni-mainz.de/e-lembke/

Originalpublikation:

C. D. Reinkemeier, G. E. Girona, E. A. Lemke, Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes, Science 363:6434, eaaw2644, 29 March 2019,
DOI:10.1126/science.aaw2644
http://science.sciencemag.org/content/363/6434/eaaw2644

Petra Giegerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-mainz.de/

More articles from Life Sciences:

nachricht Scientists discover how the molecule-sorting station in our cells is formed and maintained
18.11.2019 | Tokyo University of Science

nachricht Pesticides: Improved effect prediction of low toxicant concentrations
18.11.2019 | Helmholtz Centre for Environmental Research - UFZ

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>