Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designer molecule detects tiny amounts of cyanide, then glows

22.10.2009
A small molecule designed to detect cyanide in water samples works quickly, is easy to use, and glows under ultraviolet or "black" light.

Although the fluorescent molecule is not yet ready for market, its Indiana University Bloomington creators report in the Journal of the American Chemical Society (now online) that the tool is already able to sense cyanide below the toxicity threshold established by the World Health Organization.

"This is the first system that works in water at normal pH levels and can be modified at will to enhance its reactivity," said IU Bloomington chemist Dongwhan Lee, who led the research. "We are now looking at how to make the detector more sensitive."

Graduate student Junyong Jo is the report's first author.

One of the reasons the detector is not ready for market, Lee says, is that its optical properties need to be improved to emit light at longer wavelengths with less interference from background signals, especially those of biological origin. Since pond or river water is likely to contain living organisms and other organic matter, Lee says the detector system must be perfected.

Another unique aspect of the detector molecule is its modular structure.

"This is an essentially three-component chemical device with an activator, a receptor, and a reporter module," Lee said. "These three components we can change at will in the future, either to make the detector more sensitive, or have it detect an entirely different toxin by sending out signals as different colors of light. Because of the structure's modularity, a change in one of the three components doesn't really affect the others."

Lee and Jo were inspired by life itself -- the natural properties of proteins -- when they began designing their sensor molecule. The design of this novel system takes advantage of the structure-organizing "beta turn" motif commonly found in protein structures. The detector is essentially inert, except in the presence of cyanide, with which it preferentially reacts. The addition of cyanide induces a subtle but important structural change in the detector that turns it into a pigment that absorbs ultraviolet light (currently 270 nm) and convert it to light emission at around 375 nm, a purplish color at the very edge of human beings' normal vision range.

Cyanide is a negatively charged ion composed of one carbon and one nitrogen atom. Among its many chemical targets inside cells is the oxidative phosphorylation system, which is a crucial producer of energy. Cyanide disrupts the system, making it impossible for cells to maintain even the most basic processes, which is one reason cyanide is considered a poison.

Cyanide is a common byproduct of industrial manufacturing.

In 2003 the World Health Organization reported that cyanide contamination of drinking water is a major problem in developing countries -- and in some developed countries, too. While cyanide contamination occasionally results in outbreaks of acute illness, in most cases, cyanide contamination levels are low enough that the health effects incurred in humans are less pronounced. In these cases, cyanide poisoning may simply present as anemia, goiter, or as a mysterious inability to maintain healthy vitamin B12 levels.

A fatal dose of cyanide in humans can be as little as 90 mg, or .003 ounces (in a body weighing 60 kg, or 132 pounds). U.S. Environmental Protection Agency guidelines suggest chronic minor health problems can result from a daily exposure to cyanide of .36 mg for a 60 kg body. Both the EPA and World Health Organization set the threshold of concern at around .72 mg per day for a 60 kg body.

Lee says he hopes to develop the detector system so that it can be used to protect people from inadvertently poisoning themselves with cyanide-laced drinking water.

"Considering that cyanide is a readily accessible chemical with fatal consequences, our approach to detect it under physiological conditions is a very exciting finding," Lee says.

Lee and Jo's research is supported by grants from the U.S. Army Research Office, the National Science Foundation, and the Alfred P. Sloan Foundation.

To speak with Lee, please contact David Bricker, University Communications, at 812-856-9035 or brickerd@indiana.edu.

David Bricker | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Life Sciences:

nachricht Novel carbon source sustains deep-sea microorganism communities
18.09.2018 | King Abdullah University of Science & Technology (KAUST)

nachricht New insights into DNA phase separation
18.09.2018 | Ulsan National Institute of Science and Technology (UNIST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>