Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dengue Virus Turns On Mosquito Genes That Make Them Hungrier

30.03.2012
Researchers at the Johns Hopkins Bloomberg School of Public Health have, for the first time, shown that infection with dengue virus turns on mosquito genes that makes them hungrier and better feeders, and therefore possibly more likely to spread the disease to humans.

Specifically, they found that dengue virus infection of the mosquito’s salivary gland triggered a response that involved genes of the insect’s immune system, feeding behavior and the mosquito’s ability to sense odors. The researchers findings are published in the March 29 edition of PLoS Pathogens.


Johns Hopkins Bloomberg School of Public Health
Picture shows the presence of the dengue virus in the mosquitoes chemosensory (antennae and palp) and feeding organs (proboscis).
PLoS Pathogens (March 29, 2012)

Dengue virus is primarily spread to people by the mosquito Aedes aegypti. Over 2.5 billion people live in areas where dengue fever is endemic. The World Health Organization estimates that there are between 50 million and 100 million dengue infections each year.

“Our study shows that the dengue virus infects mosquito organs, the salivary glands and antennae that are essential for finding and feeding on a human host. This infection induces odorant-binding protein genes, which enable the mosquito to sense odors. The virus may, therefore, facilitate the mosquito’s host-seeking ability, and could—at least theoretically—increase transmission efficiency, although we don’t fully understand the relationships between feeding efficiency and virus transmission,” said George Dimopoulus, PhD, senior author of the study and professor with the Bloomberg School’s Malaria Research Institute. “In other words, a hungrier mosquito with a better ability to sense food is more likely to spread dengue virus.”

For the study, researchers performed a genome-wide microarray gene expression analysis of dengue-infected mosquitoes. Infection regulated 147 genes with predicted functions in various processes including virus transmission, immunity, blood-feeding and host-seeking. Further analysis of infected mosquitoes showed that silencing, or “switching off,” two odorant-binding protein genes resulted in an overall reduction in the mosquito’s blood-acquisition capacity from a single host by increasing the time it took the for mosquito to probe for a meal.

“We have, for the first time shown, that a human pathogen can modulate feeding-related genes and behavior of its vector mosquito, and the impact of this on transmission of disease could be significant,” said Dimopoulos.

“Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior” was written by Shuzhen Sim, Jose L. Ramirez and George Dimopoulos.

Funding for the research was provided by National Institute for Allergy and Infectious Disease at the National Institutes of Health.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht How to construct a protein factory
19.09.2019 | Universität Bern

nachricht Quality Control in Cells
19.09.2019 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>