Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dementia: New substance improves brain function

31.07.2017

BACE inhibitor successfully tested in Alzheimer's animal model

The protein amyloid beta is believed to be the major cause of Alzheimer's disease. Substances that reduce the production of amyloid beta, such as BACE inhibitors, are therefore promising candidates for new drug treatments.


Marc Aurel Busche at the two-photon microscope, which allows to visualize nerve cells with high temporal and spatial resolution in the intact brain.

Credit: Kurt Bauer / Technical University of Munich

A team at the Technical University of Munich (TUM) has recently demonstrated that one such BACE inhibitor reduces the amount of amyloid beta in the brain. By doing so, it can restore the normal function of nerve cells and significantly improve memory performance.

Around 50 million people worldwide suffer from dementia. To date, no effective drug is available that is able to halt or cure the disease. Moreover, the exact causes of the disease have yet to be definitively explained. However, there is a greater accumulation of the protein amyloid beta in Alzheimer's patients than in healthy people. As a result, the protein clumps together and damages nerve cells.

Affected cells can become hyperactive. They then constantly send false signals to neighboring cells. In addition, certain brain waves such as slow oscillations spin out of control. These waves play a key role in the formation of memories by transferring learned information into long-term memory.

Brain functions restored in mice

"A successful treatment must take effect as early in the course of the disease as possible. In our experiments, we have therefore blocked the enzyme beta secretase BACE, which produces amyloid beta," explains Dr Marc Aurel Busche, young investigator group leader at the Institute for Neuroscience of the TUM and psychiatrist in the Department of Psychiatry and Psychotherapy of the TUM university hospital rechts der Isar.

The researchers tested a substance that inhibits beta secretase in a mouse model of Alzheimer's. The mice produce large amounts of amyloid beta, which, as in humans, leads to the formation of amyloid beta plaques in the brain and causes memory loss. During the study, the mice were given the inhibitor in their food for up to eight weeks, after which they were examined. For this purpose, the researchers used a special imaging technique known as two-photon microscopy, which allowed them to observe individual nerve cells in the brain.

As expected, the mice had less amyloid beta in their brain after this period, since its production was inhibited. However, the effect of the substance was much more far-reaching: the animals' brain functions actually normalized. There were fewer hyperactive nerve cells, and the slow-wave brain patterns once again resembled those in healthy mice. A key finding for the scientists was the observation that the animals' memory also improved. The mice were able to locate a hidden platform in a water-filled maze as quickly as their healthy counterparts.

Clinical trial planned

"What really impressed and amazed us was the reversibility of the symptoms. Before the treatment, the mice had a marked clinical picture with amyloid beta plaques in their brain. Nevertheless, the substance was able to restore important brain functions and abilities," explains Aylin Keskin, lead author of the publication. Moreover, the researchers' study showed yet another benefit: "We were also able to demonstrate which neural deficits really are caused by amyloid beta. That was not fully understood with regard to hyperactive nerve cells, for example," Keskin says.

The scientists' findings will soon find its way into clinical practice: A large-scale clinical trial is planned with around 1000 participants to test a slightly modified form of the BACE inhibitor. "Needless to say, we very much hope that the promising discoveries in the animal model will translate to humans", Busche says.

###

The study was conceived as part of the SyNergy Cluster. It was sponsored by the Alzheimer Research Initiative, the German Research Foundation (DFG), the European Research Council (ERC) and the European Union FP7 programme. The experiments were carried out in cooperation with Novartis.

Publication

A. D. Keskin, M. Kekuš, H. Adelsberger, U. Neumann, D. R. Shimshek, B. Song, B. Zott, T. Peng, H. Förstl, M. Staufenbiel, I. Nelken, B. Sakmann, A. Konnerth, and M. A. Busche, BACE inhibition-dependent repair of Alzheimer's pathophysiology, Proceedings of the National Academy of Sciences, July 2017, DOI: 10.1073/pnas.1708106114

Contact

Dr. Marc Aurel Busche Technical University of Munich Institute for Neurosciences of the TUM & Department of Psychiatry and Psychotherapy of the TUM university hospital rechts der Isar Tel: +49 (0)89 289 23325 (press office Technical University of Munich) aurel.busche@tum.de http://www.pnas.org/content/early/2017/07/19/1708106114.abstract

Further information

Institute for Neuroscience of the TUM

Department of Psychiatry and Psychotherapy of the TUM university hospital rechts der Isar (in German only)

Dr. Vera Siegler | EurekAlert!

Further reports about: BACE TUM amyloid beta brain function hyperactive nerve cells

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>