Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defining Adhesion Clusters

20.01.2015

Visualizing the building blocks of cell-cell adhesion

Scientists at the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) have discovered the molecular mechanisms responsible for the formation of the adherens junction at the nanoscale level. This research is published in Developmental Cell (Wu et al., Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions, Developmental Cell, 16 Jan 2015, doi.org/10.1016/j.devcel.2014.12.003).


Mechanobiology Institute, National University of Singapore

Figure: Superresolution imaging of E-cadherin at the cell membrane. Conventional microscopy (white box) shows E-cadherin as a belt along the cell membrane. Superresolution imaging reveals that E-cadherin assembles as distinct, punctate clusters. Detailed imaging at the nanoscale level demonstrates that these clusters do not merge (dotted red box).

How are cell-cell adhesions initiated?
Although the cells that make up our body are functional units by themselves, they need to interact with each other and their environment to fulfill all their functions. Cells stick to one another as well as to their substrate through physical contacts called cell adhesions. Apart from serving as physical connections that enable cells to form tissues, cell adhesions also allow the cells to sense, signal, and respond to physical or chemical changes in the environment, as well as interact with neighbouring cells.

This is, at least in part, due to the structure of adhesion sites, or cell-cell junctions, which extend through the cell surface into the cell’s interior. At cell-cell junctions, adhesion receptors at the cell surface are linked via adaptor proteins to the cytoskeleton, a structural scaffold inside the cell composed of filamentous proteins like actin. Epithelial cadherin (E-cadherin) is a major adhesion receptor protein which forms a prominent cell-cell adhesion complex called the adherens junction.

Traditionally it was thought that clusters of E-cadherin merge to form a thick belt along the cell membrane between adjacent cells. The binding of individual E-cadherin proteins was thought to drive adhesion, with clusters formed in an adhesion-dependent manner, before merging and becoming uniformly distributed over time. This has long been the prevalent notion, based on conventional microscopy, which is limited in its ability to clearly visualize structures as small as the adherens junction or E-cadherin cluster.

However, recent findings by MBI researchers disprove this notion. Using a combination of an advanced imaging technique called superresolution microscopy along with quantitative analysis and mutational studies, MBI Principal Investigators Associate Professor Ronen Zaidel-Bar and Associate Professor Pakorn Kanchanawong and graduate student Yao Wu show that cell-cell adhesions are initiated by small clusters of about five E-cadherin molecules. Superresolution imaging allowed the nanoscale architecture of the adherens junction to be observed, and distinct, evenly sized E-cadherin clusters were monitored both in the incipient and mature cell-cell adhesions. The precursor E-cadherin cluster forms independently of adhesion, even when mutations prevent E-cadherin interactions, indicating that their formation relies on an alternative mechanism.

As more E-cadherin molecules were recruited from neighbouring cells, the clusters became denser especially at their core. However, E-cadherin clusters never increased in size or merged to form the hypothesized belt. Instead, the actin cytoskeleton was seen to fence E-cadherin clusters, thereby preventing them from merging.

These newly identified steps of adherens junction assembly, organization and maintenance advance our understanding of how adherens junctions adapt to dynamic changes in the behaviour of epithelial cells. Regulating essential functions such as cell shape, movement and rearrangement is vital for maintaining epithelium integrity, and is also important for tissue repair in wound healing and disease.

Contact Information
Amal Naquiah
amal@nus.edu.sg
Phone: +65 6516 5125

Amal Naquiah | newswise
Further information:
http://www.nus.edu.sg

More articles from Life Sciences:

nachricht Blood test shows promise for early detection of severe lung-transplant rejection
23.01.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Evolution of signaling molecules opens door to new sepsis therapy approaches
23.01.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A New Home for Optical Solitons

23.01.2019 | Physics and Astronomy

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>