Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defense against viruses or autoimmune disorder? When the phosphate decides …

08.06.2018

The first defense line of the body against virus infections is composed of so-called restriction factors. SAMHD1, one of such restriction factors, does not only play a role in the defense against viruses but also in the development of autoimmune disorders and cancer. The question of which effect SAMHD1 exertsin the cell is decided by addition or removal of phosphate groups. Nature Communications reports on the current results of a research group at the Paul-Ehrlich-Institut, whose head is Dr. Renate König, on 8 June 2018 (Online-only-Journal).

Restriction factors inhibit viral infection and proliferation (replication) in body cells. SAMHD1 (sterile alpha motif and histidine-aspartate (HD)-domain-containing protein 1) is such a restriction factor. It was identified as an important protein acting antivirally against HIV-1 (human immunodeficiency virus 1), but it was also found to have other functions.


Schematic representation of the dephosphorylation of the restriction factor SAMHD1.

Source: PEI

Thus, it was shown that mutations in the SAMHD1 gene go hand in hand with the loss of its function and may that way cause cancer and autoimmune disorders. Accordingly, there is a major interest in understanding the mode of action and regulation of this molecule better.

SAMHD1 regulates the amount of important building blocks for the formation of cellular DNA available in cells, the dNTPs (desoxynucleotide triphosphates). By attaching a phosphate group (phosphorylation) to the amino acid at positon T592, SAMHD1 becomes able to influence DNA sections that “stagnate“ during DNA duplication in such a way that the DNA replication (duplication) can be continued, thus preventing chronic inflammation. In a non-phosphorylated state, on the other hand, SAMHD1 has an antiviral effect.

Dr. Renate König, head of the research group "Cellular aspects of pathogen-host interactions" and her research group at the Paul-Ehrlich-Institut investigated which of the many phosphatases of the cell, which can removephosphate groups based on their enzyme activity, perform exactly this dephosphorylation at amino acid T592 of SAMHD1. It is only after dephosphorylation that SAMHD1 is antivirally active. The research team also studied how this reaction is temporally regulated during the cell cycle.

To do this, the researchers used two complementary proteomics approaches: These are procedures in which protein-related analyses are performed. The researchers studied the cell cycle and the influence of phosphorylation or dephosphorylation processes – as applicable – on the antiviral activity of SAMHD1.

In doing so, they identified the key enzyme which makes the antiviral activity of SAMHD1 possible, i.e. the phosphatase PP2A-B55alpha. This phosphatase obtained its cryptic name thanks to the fact that there are 90 enzyme variants (holoenzymes), but only this variant with the name PP2A-B55alpha which can convey SAMHD1 dephosphorylation and thus enable its antiviral activity. In addition, the researchers succeeded in discovering the time window in the cell cycle in which T592 dephosphorylation occurs, leading to reduced and/ or delayed HIV-1 replication.

While the phosphorylated SAMHD1 variant plays an important role in cell division and contributes to the defense against chronic inflammations, the molecule without this phosphate group is in a position to convey defense against viruses such as HIV or hepatitis virus.

The researchers intend to perform further studies in which they would like to clarify the way in which SAMHD1 provides a defense mechanism against HIV infection.

Original publication:

Schott K, Fuchs NV, Derua R, Mahboubi B, Schnellbächer E, Seifried J, Tondera C, Schmitz H, Shepard C, Brandariz-Nuñez, Diaz-Griffero F, Reuter A, Kim B, Janssens V, König R (2018): Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit.
Nat Commun 9, Article number: 2227 (2018), Jun 8

DOI 10.1038/s41467-018-04671-1


The Paul-Ehrlich-Institut, the Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and immunological veterinary medicinal products. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the manifold tasks performed at the institute. The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

https://www.nature.com/articles/s41467-018-04671-1 - Full-Text-Article (Open Access)
https://www.pei.de/EN/information/journalists-press/press-releases/2018/10-defen... - This press release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

Further reports about: HIV-1 Impfstoffe SAMHD1 amino acid autoimmune autoimmune disorder cell cycle enzyme phosphate viruses

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>