Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect in transport system cause DNA chaos in red blood cells

13.03.2012
Within all our cells lies two meters of DNA, highly ordered in a structure of less than 10 micro meters in diameter. Special proteins called histones act as small building bricks, organising our DNA in this structure.
Preservation of the structure is necessary to maintain correct function of our genes, making histones detrimental for maintaining a healthy and functional body. The research group of Associate Professor Anja Groth from BRIC, University of Copenhagen, has just elucidated a function of the protein Codanin-1, shedding light on the rare anemic disease CDAI where development of the red blood cells is disturbed. The new results also contribute with important knowledge on how our DNA-structure is maintained and how our genes are regulated.

"We became interested in Codanin-1 as it was well-known that mutations in the gene cause CDAI, whereas the function of the protein was entirely unknown. Our new results show that Codanin-1 is detrimental for the transport of newly synthesized histones and for the ordering of our DNA, when our cells are dividing. As this function is partly defect in CDAI, we could use the disease as a model to gain important knowledge in some of the basic processes that are crucial for normal cell division and development," says Associate Professor and group leader, Anja Groth.

Loss of guard function result in defective blood cells
Our DNA is copied and each identical copy is passed on to each of the two daughter cells when our cells divide. The ordered DNA structure also needs to be copied, which demands a constant supply of new histones. The histones are transported into the nucleus of our cells, through a molecular transportation system. Here they serve as small bricks that the DNA is wrapped around in an orderly structure, guided by information carried by the histones. The new results show that codanin-1 is crucial for the regulation of the histone transport. Mutations in Codanin-1 make the protein incapable of regulating the transport, giving rise to defects in the development of the red blood cells.

"Codanin-1 appears to function as a guard, which we think can detect internal and external signals to our cells. The protein then regulates the transport of new histones to the nucleus of our cells, based on this information. This transportation mechanism is defect in patients with CDAI, and for some reason that we do not yet fully understand, does this primarily affect the red blood cells," says postdoc Zuzana Jasencakova, who has been responsible for the laboratory experiments together with Ph.D. student Katrine Ask.

Basal biology and disease research goes hand in hand
Anja Groth’s research group intensively studies the basal biological mechanisms that control our DNA-structure and thereby the activity of our genes. Accordingly, they normally work with general biological model systems, but for this project, they used the characteristic of the disease CDAI to answer some basal biological questions:

"It is mostly the other way around, that basal biological findings are used to understand the development of disease. But here, we have used the defect protein of CDAI to elucidate some basal biological mechanisms. The fact that Codanin-1 serves a detrimental role in all our cells, but that defects primarily affect the red blood cells is very interesting. Hopefully we can use this detail to gain further knowledge on how our cells maintain a correct DNA-structure and regulates the genes," says Anja Groth.

The results have just been published in EMBO Journal: ”Codanin-1, mutated in the anaemic diesease CDAI, regulates Asf1 function in S-phase histone supply” , Ask et al, EMBO March 2012.

Contact:

Associate Professor Anja Groth, BRIC
Phone: +45 35325538
Mobile: +45 30507307

Postdoc Zuzana Jasencakova, BRIC
Phone: +45 35325833

Anja Groth | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>