Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea observatory goes live

18.11.2008
Off the coast of Central California, in the inky darkness of the deep sea, a bright orange metal pyramid about the size of two compact cars sits quietly on the seafloor.

Nestled within the metal pyramid is the heart of the Monterey Accelerated Research System (MARS)-the first deep-sea ocean observatory offshore of the continental United States. Six years and $13.5 million dollars in the making, the MARS Observatory went "live" on Monday, November 10, 2008, returning the first scientific data from 900 meters (3,000 feet) below the ocean surface.

Construction of the observatory was coordinated by the Monterey Bay Aquarium Research Institute (MBARI). According to Marcia McNutt, MBARI president and CEO, "Getting all of the components of the observatory to work together perfectly in the remote, unforgiving, inhospitable environment of the deep sea was no easy task. But the tougher the challenge, the greater the glory when it is finally achieved. Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: 'Watson, come here, I need you!'"

Like the Hubble Space Telescope, the MARS Observatory is not designed for human occupation, but is operated remotely. The observatory will serve as both a "power strip" and a "high-speed internet connection" for scientific instruments in the deep sea. It will allow marine scientists to continuously monitor the dark, mysterious world of the deep sea, instead of relying on brief oceanographic cruises and instruments that run on batteries.

The heart of observatory consists of two titanium pressure cylinders packed with computer networking equipment and electrical transformers. These cylinders are housed in a protective metal pyramid on the deep seafloor. This central hub is connected to shore by a 52-kilometer-long cable that can carry up to 10,000 watts of power and two gigabits per second of data. Most of the cable is buried a meter (three feet) below the seafloor.

Over the next few months, a variety of scientific instruments will be hooked up to the observatory using underwater "extension cords." These will include instruments to monitor earthquakes and to capture deep-sea animals on video. Researchers will also be testing an experiment to study the effects of ocean acidification on seafloor animals. MBARI technicians will use remotely operated vehicles (robot submarines) to plug these instruments into the central hub. After the instruments are hooked up, researchers will be able to run experiments and study deep-sea data and images from anywhere in the world.

Researchers whose experiments are hooked up to the MARS observatory will no longer have to worry about their instruments' batteries wearing out, because their experiments will get all of their electrical power from shore. Even better, researchers won't have to wait for weeks or months to recover their instruments and find out how the experiments turned out. They will be able to look at data and video from the deep sea in real time, 24 hours a day. This will allow researchers will to know immediately if their experiments are working or not.

Providing a place for researchers to test their deep-sea instruments is one of the primary goals of the MARS observatory. Many instruments will be tested on MARS before being hooked up to other deep-sea observatories offshore of the U. S. and other countries.

Funded in 2002 by a grant from the National Science Foundation, the MARS Observatory was constructed through a collaborative effort by MBARI, Woods Hole Oceanographic Institution, the University of Washington Applied Physics Laboratory, NASA's Jet Propulsion Laboratory, L-3 Communications MariPro, and Alcatel-Lucent. Each group was responsible for preparing a different part of the observatory. According to Keith Raybould, the MARS project manager, "MARS was a very challenging project. Our academic partners and contractors used many new, cutting-edge technologies. Everything had to be carefully coordinated so that all the parts of the system would work together seamlessly."

Designing and constructing this one-of-a-kind system took over six years of hard work. The environmental review process for the MARS cable alone lasted over two years and cost roughly one million dollars. One of the biggest technical challenges was creating an underwater electrical system that could convert the 10,000 volts of direct current coming through the cable to the much lower voltages required by scientific instruments.

In April 2007, an undersea cable was laid from the observatory site to shore. On February 26, 2008, MBARI engineers and remotely-operated-vehicle pilots installed the central hub and powered up the system. Unfortunately, after only 20 minutes of operation, the plug for the main power-supply began to leak, and the system had to be shut down.

Following this setback, MBARI staff and contractors spent the next eight months repairing and testing the observatory hub and improving the observatory's power system. This effort culminated in early November, 2008, when the cable-laying ship IT Intrepid arrived in Monterey Bay and hauled the trawl-resistant frame up to the surface. Working around the clock, technicians on board the ship replaced the failed underwater connector, then lowered the frame back down to the seafloor. On November 10, 2008, the MBARI marine operations group reinstalled the observatory hub and powered the system up. All systems worked perfectly. The MARS observatory had finally become a reality.

One of the first experiments that will be hooked up to the MARS observatory is the FOCE project. Led by MBARI chemist Peter Brewer, this experiment will allow researchers to find out how the increasing acidity of seawater is affecting deep-sea animals. Seawater is becoming more acidic in many parts of the ocean as human-generated carbon dioxide in the atmosphere dissolves into the oceans.

Another experiment that will be hooked up to the MARS Observatory is a special low-light video camera called the Eye-in-the-Sea. Developed under the direction of marine biologist Edie Widder, this system illuminates the seafloor with a dim red light that is invisible to many deep-sea animals. When Widder placed an earlier version of this instrument on the seafloor in the Gulf of Mexico, it captured rare footage of deep-sea sharks and of a large squid that was entirely new to science.

A third experiment scheduled for attachment to the observatory is an ultra-sensitive seismometer that will help geologists better understand fault zones and earthquakes along the Central California coast.

Kim Fulton-Bennett | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html

More articles from Life Sciences:

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Neurons migrate in the nascent brain as if on rails
17.12.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Formed to Meet Customers’ Needs – New Laser Beams for Glass Processing

17.12.2018 | Physics and Astronomy

Preserving soil quality in the long term

17.12.2018 | Architecture and Construction

New RNA sequencing strategy provides insight into microbiomes

17.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>