Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-Sea Crabs Seek Food Using Ultraviolet Vision

10.09.2012
Some deep-sea crabs have eyes sensitive to ultraviolet light, which they may use to snatch glowing plankton and stuff it in their mouths, a new Nova Southeastern University study suggests.

Tamara Frank, Ph.D., a marine biologist and associate professor at Nova Southeastern University’s Oceanographic Center, who is the principal investigator of the study, said that crabs living the deep-sea zone --- a pitch dark area at the ocean bottom ---- may be using bioluminescence to help sort out their food.

Duke University marine biologist Sönke Johnsen. Ph.D., one of the study’s collaborators, explained that the animals might be using their ultraviolet and blue-light sensitivity to sort out the likely toxic corals they're sitting on ---- which glow, producing blue-green and green bioluminescence --- from the plankton they eat, which glow blue.

The sensitivity to shorter ultraviolet wavelengths may give the crabs a form of color vision to guarantee they grab healthy grub, not poison. Frank and her collaborators reported the findings in the Sept. 6 issue of the Journal of Experimental Biology.

Frank has previously shown that certain deep-sea shrimp living in the water column can see ultraviolet wavelengths, even though they live nearly half a mile below the ocean surface, where there's little to no sunlight. Experiments to test deep-sea creatures' sensitivity to light have rarely been done on animals that live on the bottom of the ocean. The new study is one of the first to test how bottom-dwelling animals respond to light.

The team of scientists studied three ocean-bottom sites near The Bahamas. They took video and images of the regions, recording how crustaceans ate and the wavelengths of light, or color, at which neighboring animals glowed by bioluminescence. The scientists also captured and examined the eyes of eight crustaceans found at the sites and several other sites on earlier research cruises.

To capture the crustaceans, the team used the Johnson-Sea-Link submersible. During the dive, crustaceans were gently suctioned into light-tight, temperature-insulated containers. They were brought to the surface, where Frank placed them in holders in her shipboard lab and attached a microelectrode to each of their eyes.

She then flashed different colors and intensities of light at the crustaceans and recorded their eye response with the electrode. From the tests, she discovered that all of the species were extremely sensitive to blue light and two of them were extremely sensitive to both blue and ultraviolet light.

The two species sensitive to blue and UV light also used two separate light-sensing channels to make the distinction between the different colors. It's the separate channels that would allow the animals to have a form of color vision, said Johnsen, who is an expert in optics.

During a sub dive, Johnsen used a small, digital camera to capture one of the first true-color images of the bioluminescence of the coral and plankton at the sites. In this "remarkable" image, the coral glows greenish, and the plankton, which is blurred because it's drifting by as it hits the coral, glows blue, he said.

Video of the crabs placidly sitting on a sea pen, periodically picking something off corals and putting it in their mouths, and the data showing the crabs' sensitivity to blue and UV light, suggests that they have the ability color code their food. The idea is "still very much in the hypothesis stage, but it's a good idea," Johnsen said.

To further test the hypothesis, the scientists need to collect more crabs and test the animals' sensitivity to even shorter wavelengths of light. That might be possible, but the team will have to use a different sub, since the Johnson-Sea-Link is no longer available.

Another challenge is to find out whether the way the crabs are acting in the video is natural.

"Our subs, nets and ROVs greatly disturb the animals," Johnsen said. "So we're stuck with what I call forensic biology. We collect information about the animals and the environment, and then try to piece together the most likely story of what happened."

The story looks like deep-sea crabs are color-coding their food, he said.

About Nova Southeastern University’s Oceanographic Center: A world leader in marine biological research with focus on coral reef science and shark conservation, Nova Southeastern University’s Oceanographic Center has been at the forefront of graduate and undergraduate marine science education and oceanographic research for over 48 years. Students, scientists, faculty and staff come to the Center from all corners of the globe, with the common goal of learning from the ocean’s living classrooms — in one of the most diverse ecosystems known to man. http://www.nova.edu/ocean/

About Nova Southeastern University: Situated on 300 beautiful acres in Davie, Florida, Nova Southeastern University is a dynamic fully accredited research institution dedicated to providing high-quality educational programs at all levels. NSU is the eighth largest not-for-profit independent institution nationally with more than 28,000 students. NSU awards associate’s, bachelor’s, master’s, specialist, doctoral and first-professional degrees in a wide range of fields. Classified as a research university with “high research activity” by the Carnegie Foundation for the Advancement of Teaching, NSU is one of only 37 universities nationwide to also be awarded Carnegie’s Community Engagement Classification.

Ken Ma | Newswise Science News
Further information:
http://www.nova.edu

More articles from Life Sciences:

nachricht Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research

nachricht Scientists have spotted new compounds with herbicidal potential from sea fungus
09.12.2019 | Far Eastern Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>