Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea animals "eat" oil: One man's meat is another man's poison

20.06.2017

Scientists from Germany and the USA have discovered deep-sea animals living in symbiosis with bacteria that use oil as an energy source. At asphalt volcanoes in the Gulf of Mexico that spew oil, gas and tar, mussels and sponges live in symbiosis with bacteria that use short-chained alkanes in the oil as an energy source. The researchers furthermore discovered that bacteria closely related to the symbionts, which bloomed during the Deepwater Horizon oil spill, are also able to thrive on short-chain alkanes.

Stench and heat when a road is paved, black tar clumps at the beach that stick to your feet – asphalt does not make for a homey habitat. And yet it forms the basis for a flourishing ecosystem of mussels, crabs, worms, sponges and many other animals.


Colourful display of the symbiosis: Within cells in the gills of a Bathymodiolus mussel (cell nuclei in blue), Cycloclasticus (green) reside next to larger methane-oxidizing bacteria (red).

Max Planck Institute for Marine Microbiology, Bremen


The robotic arm of the remotely operated vehicle MARUM-Quest is shown collecting Cycloclasticus-bearing mussels and oil-rich asphalts at a site of active gas emission in 3000 meters water depth.

MARUM – Center for Marine Environmental Sciences, University of Bremen

Asphalt volcanoes brimming with life

In the depths of the Gulf of Mexico, oil and tar seep from the ocean floor and form bizarre structures reminiscent of cooled lava – so-called asphalt volcanoes. Researchers from Bremen, Germany, and the USA discovered these volcanoes nearly 15 years ago. These exotic environments still have many surprises in store, such as the one shown now in a study published in Nature Microbiology by an international research group led by Maxim Rubin-Blum and Nicole Dubilier from the Max Planck Institute for Marine Microbiology in Bremen, Germany.

Symbiotic bacteria use a novel source of energy and carbon

The Campeche Knolls asphalt volcanoes at about 3,000 meters water depth in the Gulf of Mexico are home to a thriving biological community. But what do these organisms live from?

“They can’t eat the asphalt or oil and other food sources are rare in the deep sea,” explains Rubin-Blum. “However, some animals have established a symbiotic relationship with bacteria, and some of these symbionts can extract energy as well as carbon from the oil.” Marine researchers have long known of such bacteria in other oil-rich environments – but they are free-living microorganisms that do not live in symbiosis.

Spoiled ring breakers

These oil-degrading bacteria belong to the genus Cycloclasticus. Their name means “ringbreaker,” and describes their ability to degrade oil by breaking hard-to-crack ring structures in oil. These aromatic compounds (called polycyclic aromatic hydrocarbons or PAHs) are highly toxic for most organisms, and degrading them is an arduous process that costs a lot of energy.

The symbiotic Cycloclasticus that the Bremen researchers discovered in mussels and sponges from the asphalt volcanoes no longer bother with degrading PAHs. They have made life easier for themselves by specializing on the oil’s easily degradable compounds – natural gases such as butane, ethane, and propane, called short-chain alkanes. “These microorganisms no longer degrade PAH,” explains Rubin-Blum, "because they have lost the genes they need to do this .” This is the first discovery of Cycloclasticus bacteria that can no longer degrade PAH and instead gain all their energy and carbon from short-chain alkanes.

Because the short-chain alkanes are so easy to use, many microorganisms compete for them. How can these symbiotic bacteria rely on such fiercely contested compounds and why did they give up their ability to live on PAH?

“We think that they can only afford this ‘luxury’ because of their symbiosis with mussels and sponges,” explains Nicole Dubilier from the Bremen Max Planck Institute. “These hosts provide the symbiotic Cycloclasticus with a continuous supply of short-chain alkanes through their constant filtering of the surrounding seawater. By living inside animals, these symbionts are well taken care of and do not have to compete with free-living bacteria.”

“This is the first time a symbiosis based on short-chain alkanes has been described,” Rubin-Blum adds. This study thus extends the range of known substances that can power chemosynthetic symbioses.

Free-living relatives: Pleasure before business

Rubin-Blum, Dubilier and their colleagues compared the genomes of the symbiotic bacteria with closely-related free-living species of Cycloclasticus. These bloomed in large numbers in the Gulf of Mexico after the Deepwater Horizon oil catastrophe. They were excited to discover that some free-living Cycloclasticus can also degrade short-chain alkanes.

“That was surprising as until now it was thought that Cycloclasticus could only live from PAHs,” explains Dubilier. Short-chain alkanes are mainly found in the early stages of an oil spill and are quickly used up by free-living microorganisms. In contrast to the symbiotic Cycloclasticus, however, their free-living relatives are still able to use PAHs. “This allows them to remain flexible. When the short-chain morsels are gone, they can still degrade the considerably tougher PAHs,” says Dubilier.

“Cycloclasticus is clearly a key player in marine oil degradation,” adds Rubin-Blum. “That is why we now plan to compare the physiology and metabolism of symbiotic and free-living Cycloclasticus in more detail to learn more about how they contribute to the degradation of hydrocarbons in the oceans.”

Original publication

Maxim Rubin-Blum, Chakkiath Paul Antony, Christian Borowski, Lizbeth Sayavedra, Thomas Pape, Heiko Sahling, Gerhard Bohrmann, Manuel Kleiner, Molly C. Redmond, David L. Valentine, Nicole Dubilier (2017): Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps. Nature Microbiology.
DOI: 10.1038/nmicrobiol.2017.93


Participating institutes

Max Planck Institute for Marine Microbiology, Bremen, Germany
MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany
Department of Geoscience, University of Calgary, Canada
Department of Biological Sciences, University of North Carolina at Charlotte, USA
Department of Earth Science, University of California at Santa Barbara, USA

Please direct your queries to

Dr. Maxim Rubin-Blum
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 905
E-Mail: mrubin@mpi-bremen.de

Prof. Dr. Nicole Dubilier
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 932
E-Mail: ndubilie@mpi-bremen.de

or the press office

E-Mail: presse@mpi-bremen.de

Dr. Fanni Aspetsberger
Phone: +49 421 2028 947

Dr. Manfred Schlösser
Phone: +49 421 2028 704

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>