Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding worms to decode regeneration

06.05.2013
Dr. Siegfried Schloissnig is head of the newly established Computational Biology junior research group at HITS.

Prof. Eugene “Gene” Myers, one of the pioneers in bioinformatics, is affiliated with the group as a mentor. Together with his laboratory at the Max Planck Center for Systems Biology in Dresden, the junior group will decipher and compare the genetic codes of several flatworm species.

Flatworms are masters of regeneration, and are, therefore, interesting for scientists: If they are cut in two pieces, each half will develop into a new worm. By comparing the genetic material, researchers hope to gain new insights into regeneration of tissue that could have a huge impact on medicine.

A new junior research group for Computational Biology (CBI) has been established at Heidelberg Institute for Theoretical Studies (HITS). It complements the work of the other six research groups, which carry out basic research in different fields of science. The focus lies on the processing and structuring of large data volumes. The leader of the new group is Dr. Siegfried Schloissnig, a 33-year-old Computer Scientist with a Doctorate in Human Biology, who previously worked as a PostDoc at the European Molecular Biology Laboratory (EMBL). A PostDoc and two PhD students will work under his leadership in Heidelberg.

The mentor: a pioneer in bioinformatics
Prof. Eugene “Gene” Myers, one of the pioneers in bioinformatics, is affiliated with the group as a mentor. The U.S. American developed the BLAST, the most widely-used search program in molecular biology, and wrote programs for whole-genome shotgun assembly that significantly contributed to the success of the Human Genome Project. The human genome was completely deciphered in the course of this project. Since June 2012, Gene Myers has been working as the director and “Klaus Tschira Chair” at the Center for Systems Biology in Dresden. The new center was established by the Max Planck Society in collaboration with the Klaus Tschira Foundation and the Max Planck Foundation. The center, which is a joint project of the Max Planck Institutes for Molecular Cell Biology and Genetics and for the Physics of Complex Systems, is set up to develop methods to better understand the cellular processes during the growth of an organism.

New approaches to the de novo assembly

The new junior research group at HITS will also work on these objectives in collaboration with Gene Myers’ laboratory in Dresden and the recently established Dresden Genome Center. Together with his group, Siegfried Schloissnig will develop new approaches to the so-called de novo assembly, which is the reconstruction of genome sequences by means of DNA sequencers and bioinformatic methods. In the course of sequencing by standard methods, DNA is copied multiple times. These copies are randomly split up into numerous small fragments. These fragments are examined for overlaps by means of bioinformatic methods and are subsequently reassembled. The smaller the fragments and the more complex the genome of interest, the more complicated is the problem. The situation becomes even more difficult, when no comparable genome is available and researchers have to assemble the genome de novo, i.e. anew. This is exactly the case with flatworms, whose genetic codes the HITS junior group plans to decipher.

The jigsaw puzzle of flatworms

The scientists thus ventured into difficult terrain: Until now the genomes of flatworms have been considered indecipherable because of their complex structure. “Two-thirds of the worm genome keep recurring,” explains Siegfried Schloissnig. “It´s like a jigsaw puzzle. And two-thirds of it are nearly identical white particles.” Together with the laboratory in Dresden, he will, for the first time, compare the currently available gene sequences of 12 worm species. The computational analysis will be performed at HITS. By means of new algorithms Dr. Schloissnig intends to piece together the DNA jigsaw puzzle of flatworms. Flatworms are masters of regeneration, and are, therefore, interesting for scientists: If they are cut in two pieces, each half will develop into a new worm. No animal is able to do it faster and more efficiently. “We’ll begin with studying Schmidtea mediterranea, which is the most interesting flatworm for Regenerative Medicine”, says Siegfried Schloissnig, “and then proceed with other species of this phylum.” By comparing the genetic material researchers hope to gain new insights into regeneration of tissue that could have a huge impact on medicine, for example, help developing methods to replace inoperative cells, tissues and organs with cultivated tissues or to stimulate endogenous regeneration and repair processes.

Computational Biology is the third research group at HITS, which uses mathematical methods and computer simulations to solve biological and medical problems. This year two more research groups will be established at the institute: The first one will deal with theoretical astrophysics and the second one with computational statistics. By 2014, HITS plans to comprise ten research groups as well as further research units such as junior groups and associated researchers.
Press Contact:
Dr. Peter Saueressig
Presse- und Öffentlichkeitsarbeit
HITS Heidelberger Institut für Theoretische Studien
Tel: +49-6221-533-245
Fax: +49-6221-533-298
peter.saueressig@h-its.org
http://www.h-its.org

Scientific Contact:
Dr. Siegfried Schloissnig
Junior Group Computational Biology
HITS Heidelberger Institut für Theoretische Studien
Tel: +49-6221-533-307
Fax: +49-6221-533-298
siegfried.schloissnig@h-its.org
http://www.h-its.org

HITS
The Heidelberg Institute for Theoretical Studies is a private non-profit research facility established by Klaus Tschira, one of the founders of the SAP AG software company. As a research institute of the Klaus Tschira Foundation, HITS conducts basic research with the focus on processing and structuring large volumes of data. The research fields range from astrophysics to cell biology. The institute is located at the campus in Schloss-Wolfsbrunnenweg.

Dr. Peter Saueressig | idw
Further information:
http://www.h-its.org
http://www.h-its.org/english/press/cbi.php?we_objectID=978&pid=505
http://www.mpi-cbg.de/research/research-groups/gene-myers/group-leader.html

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>