Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering plant immunity against parasites

18.04.2017

Nematodes are a huge threat to agriculture since they parasitize important crops such as wheat, soybean, and banana; but plants can defend themselves. Researchers at Bonn University, together with collaborators from the Sainsbury Laboratory in Norwich, identified a protein that allows plants to recognize a chemical signal from the worm and initiate immune responses against the invaders. This discovery will help to develop crop plants that feature enhanced protection against this type of parasites. The work is published in the current issue of PLoS Pathogens.

Plant-parasitic nematodes are microscopic worms that parasitize their host plants to withdraw water and nutrients. The feeding process seriously damages the host plant. Nematode infection distorts root and shoot structure, compromises the plant´s ability to absorb nutrients from soil, and eventually reduces crop yield.


Prof. Florian M. W. Grundler: Chair of the Department of Molecular Phytomedicine at the University of Bonn.

(c) Photo: Molekulare Phytomedizin/Uni Bonn


Mary Wang´ombe and Badou Mendy from the Department of Molecular Phytomedicine at the University of Bonn.

(c) Photo: Molekulare Phytomedizin/Uni Bonn

Yearly losses exceed ten percent in important crops such as wheat, soybean, and banana. In addition to causing direct damage, nematode infection also provides an opportunity for other pathogens to invade and attack the host plants.

Until now, near to nothing was known about the general innate immune response of plants against nematodes. A team of researchers at the University of Bonn, in cooperation with scientists from the Sainsbury Laboratory in Norwich, has now identified a gene in thale cress (Arabidopsis thaliana), called NILR1, that helps plants sense nematodes.

“The NILR1 is the genetic code for a receptor protein that is localized to the surface of plant cells and is able to bind and recognize other molecules,” says Prof. Florian Grundler, chair at the Department of Molecular Phytomedicine at the University of Bonn. “NILR1 most probably recognizes a molecule from nematodes, upon which, it becomes activated and immune responses of plants are unleashed.”

NILR1 recognizes a broad spectrum of nematodes

Although a few receptors, so-called resistance genes, providing protection against specific types of plant-parasitic nematodes have already been identified, NILR1 recognizes rather a broader spectrum of nematodes. “The nice thing about NILR1 is that it seems to be conserved among various crop plants and that it provides protection against many nematode species,” says group leader Dr. Shahid Siddique. “The discovery of NILR1 also raises questions about the nematode derived molecule, whose recognition is thought to be integral to this process.”

Now that an important receptor is discovered, the scientists are working to find the molecule which binds to NILR1 to switch on the immune responses. The two first authors, PhD students at the department share tasks in the project. Whereas Mary Wang´ombe focuses on the receptor protein and its function, Badou Mendy concentrates on isolating the signal molecule released by the nematodes.

New options for breeding resistant crop plants

The findings of the University Bonn Scientists open new perspectives in making crops more resistant against nematodes. They could already show that important crop plants such as tomato and sugar beet also possess a functional homologue of NILR1 – an excellent basis for further specific breeding. Once the nematode signal is characterized, a new generation of natural compounds will be available that is able to induce defense responses in plants thus paving the way for safe and sustainable nematode control.

Publication: Mendy, B., Wang’ombe, M.W., Radakovic, Z., Holbein, J., Ilyas, M., Chopra, D., Holton, N., Zipfel, C., Grundler, F.M.W., and Siddique, S.: Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes, PLoS Pathogens

Contact:

Prof. Florian M. W. Grundler
Department of Molecular Phytomedicine
University of Bonn
Tel. +49-(0)228/731675
Email: grundler@uni-bonn.de

Weitere Informationen:

https://doi.org/10.1371/journal.ppat.1006284 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>